Issue |
Sci. Tech. Energ. Transition
Volume 79, 2024
Emerging Advances in Hybrid Renewable Energy Systems and Integration
|
|
---|---|---|
Article Number | 81 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.2516/stet/2024070 | |
Published online | 15 October 2024 |
- Spichartz B., Günther K., Sourkounis C. (2022) New stability concept for primary controlled variable speed wind turbines considering wind fluctuations and power smoothing, IEEE Trans. Ind. Appl. 58, 2, 2378–2388. [CrossRef] [Google Scholar]
- Jia X., Zhang Y., Tan R.R., Li Z.W., Wang S.Q., Wang F., Fang K. (2022) Multi-objective energy planning for China’s dual carbon goals, Sustain. Prod. Consum. 34, 552–564. [CrossRef] [Google Scholar]
- Wei X., Xiangning X., Pengwei C. (2018) Overview of key microgrid technologies, Int. Trans. Electr. Energy Syst. 28, 7, 2566. [Google Scholar]
- Hafez O., Bhattacharya K. (2021) Optimal planning and design of a renewable energy based supply for micro-grids, Renew. Energy 165, 127. [CrossRef] [Google Scholar]
- Cheng H., Hu X., Wang L., Liu Y., Yu Q. (2019) Review on research of regional integrated energy system planning, Autom. Electr. Power Syst. 43, 7, 2–13 [Google Scholar]
- Gautam K.R., Andresen G.B., Victoria M. (2022) Review and techno-economic analysis of emerging thermo-mechanical energy storage technologies, Energies 15, 17, 6328. [CrossRef] [Google Scholar]
- Xu P., Wang G.C., Cai X., Shen H.Y., Jiang W.X. (2022) Design and optimization of high-efficiency meta-devices based on the equivalent circuit model and theory of electromagnetic power energy storage, J. Phys. D Appl. Phys. 55, 19, 195303. [CrossRef] [Google Scholar]
- Mathis T.S., Kurra N., Wang X., Pinto D., Simon P., Gogotsi Y. (2019) Energy storage data reporting in perspective – guidelines for interpreting the performance of electrochemical energy storage system, Adv. Energy Mater. 9, 39, 1902007. [CrossRef] [Google Scholar]
- Qingcheng Y.A.O., Xiaoling Y. (2020) Optimal configuration of independent microgrid based on Monte Carlo processing of source and load uncertainty, Energy Storage Sci. Technol. 9, 1, 186. [Google Scholar]
- Xin L., Yu H., Jing Z., Jia L. (2024) Optimal allocation of hybrid energy storage capacity based on ISSA-optimized VMD parameters. Electronics 13, 13, 2597. [CrossRef] [Google Scholar]
- Silva D.P., Salles J.L.F., Fardin J.F., Pereira M.R., Ottz V.C., Silva F.B., Pignaton E.G. (2021) Measured and forecasted weather and power dataset for management of an island and grid-connected microgrid, Data Brief 39, 107513. [CrossRef] [PubMed] [Google Scholar]
- Barbon A., Ayuso P.F., Bayon L., Silva C.A. (2021) A comparative study between racking systems for photovoltaic power systems, Renew. Energy 180, 424–437. [CrossRef] [Google Scholar]
- Blomgren G.E. (2016) The development and future of lithium ion batteries, J. Electrochem. Soc. 164, 1, 5010–5019. [Google Scholar]
- Rahman M.M., Oni A.O., Gemechu E., Kumar A. (2020) Assessment of energy storage technologies: A review, Energy Convers. Manage. 223, 113295. [CrossRef] [Google Scholar]
- Niu P., Niu S., Chang L. (2019) The defect of the Grey Wolf optimization algorithm and its verification method. Knowl. Based Syst. 171, 37–43. [CrossRef] [Google Scholar]
- Igiri C.P., Singh Y., Poonia R.C. (2020) A review study of modified swarm intelligence: particle swarm optimization, firefly, bat and gray wolf optimizer algorithms, Recent Adv. Comput. Sci. Commun. 13, 1, 5–12. [CrossRef] [Google Scholar]
- Teng Z., Lv J., Guo L. (2019) An improved hybrid grey wolf optimization algorithm, Soft Comput. 23, 6617–6631. [CrossRef] [Google Scholar]
- Zhang Y., Li Z., Han Z.Y. (2024) Optimal configuration of energy storage capacity of micro-grid with wind and solar energy based on NSWOA, Electric. Technol. 6, 36–40. [Google Scholar]
- Li Z.W., Fan D.F., Zeng C., He L. (2024) Study on optimal configuration and Operation Strategy of energy storage system considering wind and solar absorption. Sci. Technol. Energy Storage, 1–13. https://doi.org/10.19799/j.cnki.2095-4239.2024.0165 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.