Open Access
Issue
Sci. Tech. Energ. Transition
Volume 79, 2024
Article Number 50
Number of page(s) 11
DOI https://doi.org/10.2516/stet/2024048
Published online 14 August 2024
  • Antalem D.T., Muneer V., Bhattacharya A. (2022) Decentralized control of islanding/grid-connected hybrid DC/AC microgrid using interlinking converters, Sci. Technol. Energy Transition 77, 22. [CrossRef] [Google Scholar]
  • Li J., Liu J., Yan P., Li X., Zhou G., Yu D. (2021) Operation optimization of integrated energy system under a renewable energy dominated future scene considering both independence and benefit: a review, Energies 14, 1103. [CrossRef] [Google Scholar]
  • Yilmaz M., ElShatshat R. (2023) Zone-oriented 2-stage distributed voltage control algorithm for active distribution networks, Electr. Power Syst. Res. 217, 109127. [CrossRef] [Google Scholar]
  • Yan Z.M., Xu Y. (2019) Data-driven load frequency control for stochastic power systems: a deep reinforcement learning method with continuous action search, IEEE Trans. Power Syst. 34, 2, 1653–1656. [Google Scholar]
  • Bonfiglio A., Lodi M., Rosini A., Oliveri A., Procopio R. (2024) Design, realization and testing of a synthetic inertia controller for wind turbine power generators, Sustain. Energy Grids Net. 38, 101234. [CrossRef] [Google Scholar]
  • Wang Z., Li Z., Zeng X., Yu K., He S., Li J., Lan Y., Zhuo C. (2023) Flexible grounding control strategy based on proportional series inertial control for distribution networks, Electr. Power Syst. Res. 225, 109841. [CrossRef] [Google Scholar]
  • Ren M., Sun X., Sun Y., Shi K., Xu P. (2023) A virtual inertial control strategy for bidirectional interface converters in hybrid microgrid, Int. J. Elec. Power Energy Syst. 153, 109388. [CrossRef] [Google Scholar]
  • Liu H., Di P., Zhao T., Li H., Liu P. (2023) Adaptive inertia control of hybrid energy storage system based on Butterworth filter, Energy Rep. 9, S7, 288–298. [CrossRef] [Google Scholar]
  • Saleh A., Hasanien H.M., Turky R., Turdybek B., Alharbi M., Jurado F., Omran W.A. (2023) Optimal model predictive control for virtual inertia control of autonomous microgrids, Sustainability 15, 6, 5009. [CrossRef] [MathSciNet] [Google Scholar]
  • Chen C.Y., Cui M.J., Li F.X., Yin S., Wang X. (2021) Model-free emergency frequency control based on reinforcement learning, IEEE Trans. Ind. Inform. 5, 17, 2336–2346. [CrossRef] [Google Scholar]
  • Zhang Y., Zhu H., Wang X. (2019) Prediction for the maximum frequency deviation of post-disturbance based on the deep belief network, in: IEEE Innovative Smart Grid Technologies – Asia (ISGT Asia), Chengdu, China, May 21–24, IEEE, pp. 683–688. [Google Scholar]
  • Wang S., Li B., Li G., Yao B., Wu J. (2021) Short-term wind power prediction based on multidimensional data cleaning and feature reconfiguration, Appl. Energy 292, 116851. [CrossRef] [Google Scholar]
  • Tang X., Wu M., Li M., Ding B. (2022) On designing the event-triggered multistep model predictive control for nonlinear system over networks with packet dropouts and cyber attacks, IEEE Trans. Cybern. 52, 10, 11200–11212. [CrossRef] [PubMed] [Google Scholar]
  • Amirrezai M., Rezaie H., Goetz S.M. (2023) Feasibility study of incorporating static compensators in distribution networks containing distributed generation considering system power factor, Electr. Power Syst. Res. 219, 109253. [CrossRef] [Google Scholar]
  • Wang Y., Delille G., Bayem H., Guillaud X., Francois B. (2013) High wind power penetration in isolated power systems: assessment of wind inertial and primary frequency responses, IEEE Trans. Power Syst. 28, 3, 2412–2420. [CrossRef] [Google Scholar]
  • Fang Y., Hu P., Zhu N., Minfu A., Jiang D. (2024) Sizing method of a novel hybrid energy storage considering adaptive inertia control, Sustain. Energy Technol. Assess. 61, 103602. [Google Scholar]
  • Kim J.Y., Kang Y.C., Kim K.H., Kim T.K., Cho D.H., Song S.H., Kim S.C. (2022) Linear control gain for synthetic inertia of a PMSG-based wind turbine generator, J. Electr. Eng. Technol. 18, 1, 53–60. [Google Scholar]
  • Song W., Wang L., Zhao W., Zhang X., Wang Z. (2022) Inertia optimization control and transient stability analysis of wind power grid-connected system, Front. Energy Res. 10, 939468. [CrossRef] [Google Scholar]
  • Zhang J., Li F., Chen T., Cao Y., Wang D., Gao X. (2022) Virtual inertia control parameter regulator of doubly fed induction generator based on direct heuristic dynamic programming, Energy Rep. 8, S10, 259–266. [Google Scholar]
  • Moon Y.H., Cho B.H., Lee Y.H., Hong H.S. (1999) Energy conservation law and its application for the direct energy method of power system stability, in: Proceedings of the 1999 Winter Meeting of IEEE Power Engineering Society. Part 1 (of 2), IEEE, pp. 695–700. [Google Scholar]
  • Oludamilare B.A., Ryuto S., Kazuki O., Tomonobu S., Abdul M.H. (2019) Static voltage stability improvement with battery energy storage considering optimal control of active and reactive power injection, Electr. Power Syst. Res. 172, 303–312. [CrossRef] [Google Scholar]
  • Liu Z., Wen F., Ledwich G. (2011) Optimal siting and sizing of distributed generators in distribution systems considering uncertainties, IEEE Trans. Power Deliv. 26, 4, 2541–2551. [CrossRef] [Google Scholar]
  • Wogrin S., Tejada-Arango D., Delikaraoglou S., Botterud A. (2020) Assessing the impact of inertia and reactive power constraints in generation expansion planning, Appl. Energy 280, 115925. [CrossRef] [Google Scholar]
  • Amirrezai M., Rezaie H., Goetz S.M. (2023) Feasibility study of incorporating static compensators in distribution networks containing distributed generation considering system power factor, Electr. Power Syst. Res. 219, 109253. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.