Issue |
Sci. Tech. Energ. Transition
Volume 79, 2024
Synthesis and characterisation of porous materials for clean energy applications
|
|
---|---|---|
Article Number | 84 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.2516/stet/2024050 | |
Published online | 23 October 2024 |
- Diblitz K., Feldbaum T., Ludemann T. (1998) Manufacturing of raw materials for the catalyst industry, In: Recent Advances In Basic and Applied Aspects of Industrial Catalysis, Proceedings of 13th National Symposium and Silver Jubilee Symposium of Catalysis of India, Elsevier, pp. 599–611. https://doi.org/10.1016/S0167-2991(98)80336-4. [Google Scholar]
- Kaya C., He J.Y., Gu X., Butler E.G. (2002) Nanostructured ceramic powders by hydrothermal synthesis and their applications, Microporous Mesoporous Mater. 54, 37–49. [CrossRef] [Google Scholar]
- Nørskov J.K., Bligaard T., Hvolbæk B., Abild-Pedersen F., Chorkendorff I., Christensen C.H. (2008) The nature of the active site in heterogeneous metal catalysis, Chem. Soc. Rev. 37, 2163–2171. [CrossRef] [PubMed] [Google Scholar]
- Mavrič A., Valant M., Cui C., Wang Z.M. (2019) Advanced applications of amorphous alumina: From nano to bulk, J. Non-Cryst. Solids 521, 119493. [CrossRef] [Google Scholar]
- Brühne S., Gottlieb S., Assmus W., Alig E., Schmidt M.U. (2008) Atomic structure analysis of nanocrystalline boehmite AlO(OH), Cryst. Growth Des. 8, 489–493. [CrossRef] [Google Scholar]
- Karger-Kocsis J., Lendvai L. (2018) Polymer/boehmite nanocomposites: a review, J. Appl. Polym. Sci. 135, 45573. [CrossRef] [Google Scholar]
- Zhang X., Cui W., Page K.L., Pearce C.I., Bowden M.E., Graham T.R., Shen Z., Li P., Wang Z., Kerisit S., N’Diaye A.T. (2018) Size and morphology controlled synthesis of boehmite nanoplates and crystal growth mechanisms, Cryst. Growth Des. 18, 3596–3606. [CrossRef] [Google Scholar]
- Panias D., Asimidis P., Paspaliaris I. (2001) Solubility of boehmite in concentrated sodium hydroxide solutions: model development and assessment, Hydrometallurgy 59, 15–29. [CrossRef] [Google Scholar]
- Jiao W., Wu X., Xue T., Li G., Wang W., Wang Y., Wang Y.M., Tang Y., He M.Y. (2016) Morphological controlled growth of nanosized boehmite with enhanced aspect ratios in an organic additive-free cationic–anionic double hydrolysis method, Cryst. Growth Des. 16, 5166–5173. [CrossRef] [Google Scholar]
- Petrakli F., Arkas M., Tsetsekou A. (2018) α-Alumina nanospheres from nano-dispersed boehmite synthesized by a wet chemical route, J. Amer. Ceram. Soc. 101, 3508–3519. [CrossRef] [Google Scholar]
- Jolivet J.P., Froidefond C., Pottier A., Chanéac C., Cassaignon S., Tronc E., Euzen P. (2004) Size tailoring of oxide nanoparticles by precipitation in aqueous medium. A semi-quantitative modelling, J. Mater. Chem. 14, 3281–3288. [CrossRef] [Google Scholar]
- Adschiri T., Hakuta Y., Sue K., Arai K. (2001) Hydrothermal synthesis of metal oxide nanoparticles at supercritical conditions, J. Nanoparticle Res. 3, 227–235. [CrossRef] [Google Scholar]
- Chen X.Y., Huh H.S., Lee S.W. (2007) Hydrothermal synthesis of boehmite (γ-AlOOH) nanoplatelets and nanowires: pH-controlled morphologies, Nanotechnology 18, 285608. [CrossRef] [Google Scholar]
- Pardo P., Montoya N., Alarcón J. (2015) Tuning the size and shape of nano-boehmites by a free-additive hydrothermal method, Cryst. Eng. Comm. 17, 2091–2100. [CrossRef] [Google Scholar]
- He T., Xiang L., Zhu S. (2009) Different nanostructures of boehmite fabricated by hydrothermal process: effects of pH and anions, Cryst. Eng. Comm. 11, 1338–1342. [CrossRef] [Google Scholar]
- Chiche D., Chanéac C., Revel R., Jolivet J.-P. (2006) Size and shape control of γ-AlOOH boehmite nanoparticles, a precursor of γ-Al2O3 catalyst, Stud. Surf. Sci. Catal. 162, 393–400. [CrossRef] [Google Scholar]
- Zhang L., Jiao X., Chen D., Jiao M. (2011) γ‐AlOOH nanomaterials with regular shapes: hydrothermal fabrication and Cr2O7 2− adsorption, Eur. J. Inorg. Chem. 2011, 5258–5264. [CrossRef] [Google Scholar]
- Kim K.S., Kingston C.T., Hrdina A., Jakubinek M.B., Guan J., Plunkett M., Simardl B. (2014) Hydrogen-catalyzed, pilot-scale production of small-diameter boron nitride nanotubes and their macroscopic assemblies, ACS Nano 8, 6211–6220. [CrossRef] [PubMed] [Google Scholar]
- Otte A., Park K. (2022) Transitioning from a lab-scale PLGA microparticle formulation to pilot-scale manufacturing, J. Control. Release 348, 841–848. [CrossRef] [Google Scholar]
- Okada K., Hattori A., Taniguchi T., Nukui A., Das R.N. (2000) Effect of divalent cation additives on the γ‐Al2O3‐to‐α‐Al2O3 phase transition, J. Am. Ceram. Soc. 83, 928–932. [CrossRef] [Google Scholar]
- Okada K., Hattori A., Kameshima Y., Yasumori A., Das R.N. (2000) Effect of monovalent cation additives on the γ‐Al2O3‐to‐α‐Al2O3 phase transition, J. Am. Ceram. Soc. 83, 1233–1236. [CrossRef] [Google Scholar]
- Okada K., Nagashima T., Kameshima Y., Yasumori A., Tsukada T. (2002) Relationship between formation conditions, properties, and crystallite size of boehmite, J. Colloid Interface Sci. 253, 308–314. [CrossRef] [Google Scholar]
- Tettenhorst R. (1980) Crystal chemistry of boehmite, Clays Clay Miner. 28, 373–380. [CrossRef] [Google Scholar]
- Kloprogge J.T., Duong L.V., Wood B.J., Frost R.L. (2006) XPS study of the major minerals in bauxite: gibbsite, bayerite and (pseudo-)boehmite, J Colloid Interface Sci. 296, 572–576. [CrossRef] [Google Scholar]
- Wang Y.G., Bronsveld P.M., DeHosson J.T., Djuričić B., McGarry D., Pickering S. (1998) Ordering of octahedral vacancies in transition aluminas, J. Am. Ceram. Soc. 81, 1655–1660. [CrossRef] [Google Scholar]
- Boumaza A., Favaro L., Lédion J., Sattonnay G., Brubach J.B., Berthet P., Huntz A.M., Roy P., Tétot R. (2009) Transition alumina phases induced by heat treatment of boehmite: an X-ray diffraction and infrared spectroscopy study, J Solid State Chem. 182, 1171–1176. [CrossRef] [Google Scholar]
- Christoph G.G. (1979) The crystal structure of boehmite, Clays Clay Miner. 27, 81–86. [CrossRef] [Google Scholar]
- Tettenhorst R.T., Corbató C.E. (1988) Comparison of experimental and calculated X-ray powder diffraction data for boehmite, Clays Clay Miner. 36, 181–183. [CrossRef] [Google Scholar]
- Ulusoy U. (2023) A review of particle shape effects on material properties for various engineering applications: from macro to nanoscale, Minerals 13, 91. [CrossRef] [Google Scholar]
- Mikli V., Käerdi H., Kulu P., Besterci M. (2001) Characterization of powder particle morphology, Proc. Estonian Acad. Sci. Eng. 7, 22–34. [CrossRef] [Google Scholar]
- Zhou W., Greer H.F. (2016) What can electron microscopy tell us beyond crystal structures?, Eur. J. Inorg. Chem. 2016, 941–950. [CrossRef] [Google Scholar]
- Florea I., Feral-Martin C., Majimel J., Ihiawakrim D., Hirlimann C., Ersen O. (2013) Three-dimensional tomographic analyses of CeO2 nanoparticles, Cryst. Growth Des. 13, 1110–1121. [CrossRef] [Google Scholar]
- Chiche D., Digne M., Revel R., Chanéac C., Jolivet J.-P. (2008) Accurate determination of oxide nanoparticle size and shape based on X-ray powder pattern simulation: application to boehmite AlOOH, J. Phys. Chem. 112, 8524–8533. [Google Scholar]
- Chiche D., Chizallet C., Durupthy O., Chanéac C., Revel R., Raybaud P., Jolivet J.P. (2009) Growth of boehmite particles in the presence of xylitol: morphology oriented by the nest effect of hydrogen bonding, Phys. Chem. Chem. Phys. 11, 11310–11323. [CrossRef] [PubMed] [Google Scholar]
- Bokhimi X., Sánchez-Valente J., Pedraza F. (2002) Crystallization of sol-gel boehmite via hydrothermal annealing, J. Solid State Chem. 166, 182–190. [CrossRef] [Google Scholar]
- Mishra D., Anand S., Panda R.K., Das R.P. (2000) Hydrothermal preparation and characterization of boehmites, Mater. Lett. 42, 38–45. [CrossRef] [Google Scholar]
- Liu Y., Ma D., Han X., Bao X., Frandsen W., Wang D., Su D. (2008) Hydrothermal synthesis of microscale boehmite and gamma nanoleaves alumina, Mater. Lett. 62, 1297–1301. [CrossRef] [Google Scholar]
- Louaer S., Wang Y., Guo L. (2013) Fast synthesis and size control of gibbsite nanoplatelets, their pseudomorphic dehydroxylation, and efficient dye adsorption, ACS Appl. Mater. Interfaces 5, 9648–9655. [CrossRef] [PubMed] [Google Scholar]
- Basset J.M., Taarit Y.B., Coudurier G., Praliaud H. (1974) The effect of oxygen on Lewis acidity of aluminum alkyl compounds and its promoting effect on cocatalysts in metathesis, J. Organomet. Chem. 74, 167–173. [CrossRef] [Google Scholar]
- Fu G.F., Wang J., Xu B., Gao H., Xu X.-L., Cheng H. (2010) Influence of hydrothermal temperature on structure and microstructure of boehmite, Trans. Nonferrous Met. Soc. China 20, s221–s225. [CrossRef] [Google Scholar]
- Chen X.Y., Lee S.W. (2007) pH-Dependent formation of boehmite (γ-AlOOH) nanorods and nanoflakes, Chem. Phys. Lett. 438, 279–284. [CrossRef] [Google Scholar]
- Zhao B., Wang J. (2016) 3D quantitative shape analysis on form, roundness, and compactness with μCT, Powder Technol. 291, 262–275. [CrossRef] [Google Scholar]
- Wadell H. (1932) Volume, shape, and roundness of rock particles, J. Geol. 40, 443–451. [CrossRef] [Google Scholar]
- Jiang N. (2016) Electron beam damage in oxides: a review, Rep. Prog. Phys. 79, 016501. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Arami H., Mazloumi M., Khalifehzadeh R., Sadrnezhaad S.K. (2007) Electron beam-induced “nanocalcination” of boehmite nanostrips to mesoporous α-alumina phase, J. Am. Ceram. Soc. 90, 3311–3313. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.