Open Access
Issue |
Sci. Tech. Energ. Transition
Volume 79, 2024
|
|
---|---|---|
Article Number | 95 | |
Number of page(s) | 25 | |
DOI | https://doi.org/10.2516/stet/2024091 | |
Published online | 28 November 2024 |
- Alkmim F.F., Martins-Neto M.A. (2001) A Bacia Intracratônica do São Francisco: Arcabouço estrutural e cenários evolutivos, in: Pinto C.P., Martins-Neto M.A. (eds), Bacia do São Francisco: Geologia e Recursos Naturais, Sociedade Brasileira de Geologia (SBG) – Núcleo MG, Belo Horizonte, pp. 9–30. [Google Scholar]
- Amaral L., Caxito F. A., Pedrosa-Soares A. C., Queiroga G., Babinski M., Trindade R., Lana C., Chemale F. (2020) The Ribeirão da Folha ophiolite-bearing accretionary wedge (Araçuaí orogen, SE Brazil): New data for Cryogenian plagiogranite and metasedimentary rocks, Precambrian Res. 336, 105522. https://doi.org/10.1016/j.precamres.2019.105522. [CrossRef] [Google Scholar]
- Assumpção M., Azevedo P.A., Rocha M.P., Bianchi M.B. (2017) Lithospheric Features of the São Francisco Craton, in: Heilbron M., Cordani U., Alkmim F. (eds), São Francisco Craton, Eastern Brazil. Regional geology reviews, Springer, Cham, pp. 15–25. https://doi.org/10.1007/978-3-319-01715-0_2. [CrossRef] [Google Scholar]
- Boreham C. J., Edwards D. S., Feitz A. J., Murray A. P., Mahlstedt N., Horsfield B. (2023) Modelling of hydrogen gas generation from overmature organic matter in the Cooper Basin, Australia, APPEA J. 63, 2, S351–S356. https://doi.org/10.1071/AJ22084. [CrossRef] [Google Scholar]
- Borges A.J., Drews M.G.P. (2001) Anomalias Aeromagnéticas Notáveis da Bacia do Rio São Francisco, in: Seventh International Congress of the Brazilian Geophysical Society, Salvador, 28–31 October, European Association of Geoscientists & Engineers, pp. 742–745. https://doi.org/10.3997/2214-4609-pdb.217.183. [Google Scholar]
- Brandt A. R. (2023) Greenhouse gas intensity of natural hydrogen produced from subsurface geologic accumulations, Joule 7, 8, 1818–1831. https://doi.org/10.1016/j.joule.2023.07.001. [CrossRef] [Google Scholar]
- Cannon S. (2016) Petrophysics: a practical guide, John Wiley and Sons, Ltd, ISBN 978-1-118-74674. https://doi.org/10.1002/9781119117636. [Google Scholar]
- Carrillo A.R., Gonzalez Penagos F., Rodriguez G., Moretti I.(2023) Natural H2 emissions in Colombian ophiolites: first findings, Geosciences 13, 12, 358. https://doi.org/10.3390/geosciences13120358. [CrossRef] [Google Scholar]
- Delgado I.M., Souza J.D., Silva L.C., Filho N.C.S., Santos R.A., Pedreira A.J., Guimarães J.T., Angelim L.A.A., Vasconcelos A.M., Gomes I.P., Filho J.V.L., Valente C.R., Perrota M.M., Heineck C.A. (2003) Geotectônica do Escudo Atlântico, in: Bizzi L.A., Schobbenhaus C., Vidotti R.M., Gonçalves J.H. (eds), Geologia, Tectônica e Recursos Minerais do Brasil, CPRM, Capítulo V, Brasília, pp. 227–258. [Google Scholar]
- Dignart A. (2013) São Francisco basin, in: Brasil Round 12th – Oil and gas bidding rounds, Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, Available at https://www.gov.br/anp/pt-br/rodadas-anp/rodadas-concluidas/concessao-de-blocos-exploratorios/12a-rodada-licitacoes-blocos/arquivos/seminarios/sao-francisco.pdf (accessed March 5, 2024). [Google Scholar]
- Donze F, Truche L, Shekari Namin P, Lefeuvre N, Bazarkina E. (2020) Migration of natural hydrogen from deep-seated sources in the Sao Francisco basin, Brazil, Geosciences 10, 346. https://doi.org/10.3390/geosciences10090346. [CrossRef] [Google Scholar]
- Fernandes P.R., Tommasi A., Vauchez A., Neves S.P., Nannini F. (2021) The São Francisco cratonic root beneath the Neoproterozoic Brasilia belt (Brazil): Petrophysical data from kimberlite xenoliths, Tectonophysics 816, 229011. https://doi.org/10.1016/j.tecto.2021.229011. [CrossRef] [Google Scholar]
- Fonseca A.C.L., Novo T.A., Nachtergaele S., Fonte-Boa T.M.R., Van Ranst G., De Grave J. (2021) Differential phanerozoic evolution of cratonic and non-cratonic lithosphere from a thermochrono-logical perspective: São Francisco Craton and marginal orogens (Brazil), Gondwana Res. 93, 106–126. https://doi.org/10.1016/j.gr.2021.01.006. [CrossRef] [Google Scholar]
- Frery E., Langhi L., Maison M., Moretti I. (2021) Natural hydrogen seeps identified in the North Perth basin, Western Australia, Int. J. Hydrog. Energy 46, 61, 31158–31173. https://doi.org/10.1016/j.ijhydene.2021.07.023. [CrossRef] [Google Scholar]
- Flude S., Warr O., Magalhaes N., Bordmann V, Fleury J. M., Trindade R., Reis H., Sherwood Lollar B., Ballentine C. (2019) Deep crustal source for hydrogen and helium gases in the São Francisco Basin, Minas Gerais, Brazil, in: AGU Fall Meeting Absracts. Available at https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/534136. [Google Scholar]
- Garayp E., Frimmel H.E. (2022) A modified paleoplacer model for the metaconglomerate-hosted gold deposits at Jacobina, Brazil, Miner Depos. 59, 627–654. https://doi.org/10.1007/s00126-023-01220-9. [Google Scholar]
- Geymond U., Ramanaidou E., Lévy D., Ouaya A., Moretti I. (2022) Can weathering of banded iron formations generate natural hydrogen? Evidence from Australia, Brazil and South Africa, Minerals 12, 163. https://doi.org/10.3390/min12020163. [CrossRef] [Google Scholar]
- Geymond U., Briolet T., Combaudon V., Sissmann O., Martinez I., Duttine M., Moretti I. (2023) Reassessing the role of magnetite during natural hydrogen generation, Front. Earth Sci. 11, 1169356. https://doi.org/10.3389/feart.2023.1169356. [CrossRef] [Google Scholar]
- Gibson S.A., Thompson R.N., Leonardos O.H., Dickin A.P., Mitchell J. (1995) The Late Cretaceous impact of the Trindade mantle plume: evidence from large-volume, mafic, potassic magmatism in SE Brazil, J. Petrol. 36, 189–229. https://doi.org/10.1093/petrology/36.1.189. [CrossRef] [Google Scholar]
- Guélard J., Beaumont V., Rouchon V., Guyot F., Pillot D., Jézéquel D., Ader M., Newell K.D., Deville E. (2017) Natural H2 in Kansas: deep or shallow origin? Geochem. Geophys. Geosyst. 18, 1841–1865. https://doi.org/10.1002/2016GC006544. [CrossRef] [Google Scholar]
- Guimarães S.N.P., Prado E.M.G., Viera F.P., Lacasse C.M., Rocha N.S., Jesus B.L., Souza Filho O.A. (2022) Updated mapping of terrestrial heat flow in Brazil, J. South Am. Earth Sci. 113, 103627. https://doi.org/10.1016/j.jsames.2021.103627. [CrossRef] [Google Scholar]
- Hackspacher P. C., Ribeiro L. F. B., Ribeiro M. C. S., Fetter A. H., Neto J. H., Tello C. E. S., Dantas E. L. (2004) Consolidation and break-up of the South American platform in southeastern Brazil: tectonothermal and denudation histories, Gondwana Res. 7, 1, 91–101. https://doi.org/10.1016/S1342-937X(05)70308-7. [CrossRef] [Google Scholar]
- Horibe Y., Craig H. (1995) D/H fractionation in the system methane-hydrogen-water, Geoch. Cosm. Acta 59, 24, 5209–5217. https://doi.org/10.1016/0016-7037(95)00391-6. [CrossRef] [Google Scholar]
- Horsfield B., Mahlstedt N., Weniger P., Misch D., VranjesWessely S., Han S., Wang C. (2022) Molecular hydrogen from organic sources in the deep Songliao Basin, PR China, Int. J. Hydrog. Energy 47, 38, 16750–16774. https://doi.org/10.1016/j.ijhydene.2022.02.208. [CrossRef] [Google Scholar]
- Johnson A., Cheeseman S., Ferris J. (1999) Improved compilation of Antarctic Peninsula magnetic data by new interactive grid suturing and blending methods, Ann. Geofisica 42, 2, 249–259. https://doi.org/10.4401/ag-3717. [Google Scholar]
- Klein F., Bach W., McCollom T.M. (2013) Compositional controls on hydrogen generation during serpentinization of ultramafic rocks, Lithos 178, 55–69. https://doi.org/10.1016/j.lithos.2013.03.008. [CrossRef] [Google Scholar]
- Klein F., Tarnas J. D., Bach W. (2020) Abiotic sources of molecular hydrogen on Earth, Elements 16, 19–24. https://doi.org/10.2138/gselements.16.1.19. [CrossRef] [Google Scholar]
- Larin N., Zgonnik V., Rodina S., Deville E., Prinzhofer A., Larin V. N. (2015) Natural molecular hydrogen seepage associated with surficial, rounded depressions on the European Craton in Russia, Nat. Resour. Res. 24, 369–383. https://doi.org/10.1007/s11053-014-9257-5. [CrossRef] [Google Scholar]
- Lefeuvre N., Truche L., Donzé F.-V., Gal F., Tremosa J., Fakoury R.-A., Calassou S., Gaucher E.C. (2022) Natural hydrogen migration along thrust faults in foothill basins: the North Pyrenean Frontal Thrust case study, Appl. Geochem. 145, 105396. https://doi.org/10.1016/j.apgeochem.2022.105396. [CrossRef] [Google Scholar]
- Leila M., Loiseau K., Moretti I. (2022) Controls on generation and accumulation of blended gases (CH4/H2/He) in the Neoproterozoic Amadeus Basin, Australia. Mar. Petrol. Geol. 140, 105643. https://doi.org/10.1016/j.marpetgeo.2022.105643. [CrossRef] [Google Scholar]
- Lévy D., Roche V., Pasquet G., Combaudon V., Geymond U., Loiseau K., Moretti I. (2023) Natural H2 exploration: tools and workflows to characterize a play, Sci. Tech. Energ. Transition 78, 27. https://doi.org/10.2516/stet/2023021. [CrossRef] [Google Scholar]
- Maiga O., Deville E., Laval J., Prinzhofer A., Diallo A.B. (2023a) Characterization of the spontaneously recharging natural hydrogen reservoirs of Bourakebougou in Mali, Sci. Rep. 13, 1, 11876. https://doi.org/10.1038/s41598-023-38977-y. [CrossRef] [Google Scholar]
- Maiga O., Deville E., Laval J., Prinzhofer A., Diallo A.B. (2023b) Trapping processes of large volumes of natural hydrogen in the subsurface: The emblematic case of the Bourakebougou H2 field in Mali, Int. J. Hydrog. Energy 50, 640–647. https://doi.org/10.1016/j.ijhydene.2023.10.131. [Google Scholar]
- Martins-Neto M.A. (2009) Sequence stratigraphic framework of Proterozoic successions in eastern Brazil, Mar. Petrol. Geol. 26, 163–176. https://doi.org/10.1016/j.marpetgeo.2007.10.001. [CrossRef] [Google Scholar]
- Moretti I., Prinzhofer A., Françolin J., Pacheco C., Rosanne M., Rupin F., Mertens J. (2021a) Long term monitoring of natural hydrogen superficial emissions in a Brazilian cratonic environment. Sporadic large pulses versus daily periodic emissions, Int. J. Hydrog. Energy. 46, 5, 3615–3628. https://doi.org/10.1016/j.ijhydene.2020.11.026. [CrossRef] [Google Scholar]
- Moretti I., Brouilly E., Loiseau K., Prinzhofer A., Deville E. (2021b) Hydrogen emanations in intracratonic areas: new guide lines for early exploration basin screening, Geosciences 11, 145. https://doi.org/10.3390/geosciences11030145. [CrossRef] [Google Scholar]
- Moretti I., Geymond U., Pasquet G., Aimar L., Rabaute A. (2022) Natural hydrogen emanations in Namibia: field acquisition and satellite image analysis, Int. J. Hydrog. Energy 47, 84, 3588–35607. https://doi.org/10.1016/j.ijhydene.2022.08.135. [Google Scholar]
- Moretti I., Bouton N, Ammouial J., Carrillo A. (2024) The H2 potential of the Colombian coals in natural conditions, Int. J. Hydrog. Energy 77, 1443–1456. https://doi.org/10.1016/j.ijhydene.2024.06.225. [CrossRef] [Google Scholar]
- Myagkiy A., Brunet F., Popov C., Krüger R., Guimarães H., Charlet L., Moretti I. (2019) H2 dynamics in the soil of an H2-emitting zone (São Francisco Basin, Brazil): Microbial uptake quantification and reactive transport modelling, Appl. Geochem. 112, 104474. https://doi.org/10.1016/j.apgeochem.2019.104474. [Google Scholar]
- Myagkiy A., Moretti I., Brunet F. (2020) Space and time distribution of subsurface H2 concentration in so-called “fairy circles”: insight from a conceptual 2-D transport model, Bull. Soc. Géol. Fr 191, 13. https://doi.org/10.1051/bsgf/2020010. [CrossRef] [EDP Sciences] [Google Scholar]
- Pasquet G., Houssein Hassan R., Sissmann O., Varet J., Moretti I. (2022) An attempt to study natural H2 resources across an oceanic ridge penetrating a continent: The Asal–Ghoubbet Rift (Republic of Djibouti), Geosciences 12, 16. https://doi.org/10.3390/geosciences12010016. [Google Scholar]
- Prinzhofer A., Pernaton E. (1997) Isotopically light methane in natural gases: bacterial imprint or segregative migration? Chem. Geol. 42, 193–200. https://doi.org/10.1016/S0009-2541(97)00082-X. [CrossRef] [Google Scholar]
- Prinzhofer A., Cissé C.S.T., Diallo A.B. (2018) Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali), Int. J. Hydrog. Energy 43, 19315–19326. https://doi.org/10.1016/j.ijhydene.2018.08.193. [CrossRef] [Google Scholar]
- Prinzhofer A., Moretti I., Françolin J., Pacheco C., D’Agostino A., Werly J., Rupin F. (2019) Natural hydrogen continuous emission from sedimentary basins: the example of a Brazilian H2-emitting structure, Int. J. Hydrog. Energy 44, 12, 5676–5685. https://doi.org/10.1016/j.ijhydene.2019.01.119. [CrossRef] [Google Scholar]
- Prinzhofer A, Cacas-Stentz M.C. (2023) Natural hydrogen and blend gas: a dynamic model of accumulation, Int. J. Hydrog. Energy 48, 57, 21610–21623. https://doi.org/10.1016/j.ijhydene.2023.03.060. [CrossRef] [Google Scholar]
- Prinzhofer A, Rigollet C, Leufeuvre N., Françolin J., Miranda P. E. (2024) Maricá (Brazil), the new natural hydrogen play which changes the paradigm of hydrogen exploration, Int. J. Hydrog. Energy 62, 91–98. https://doi.org/10.1016/j.ijhydene.2024.02.263. [CrossRef] [Google Scholar]
- Reis H.L.S., Alkmim F.F. (2015) Anatomy of a basin-controlled foreland fold-thrust belt curve: the Três Marias salient, São Francisco basin, Brazil, Mar. Petrol. Geol. 66, 4, 711–731. https://doi.org/10.1016/j.marpetgeo.2015.07.013. [CrossRef] [Google Scholar]
- Reis H.L.S., Fonseca R.C.S. (2021) Does the unusual geochemical composition of the São Francisco basin natural gas (E Brazil) reveal typical characteristics of ancient and overmature petroleum systems?, in: Goldschmidt 2021, Virtual, 4–9 July. https://doi.org/10.7185/gold2021.6383. [Google Scholar]
- Reis H.L.S., Suss J.F., Fonseca R.C.S., Alkmim F.F. (2017) Ediacaran forebulge grabens of the southern São Francisco basin, SE Brazil: Craton interior dynamics during West Gondwana assembly, Precambrian Res. 302, 150–170. https://doi.org/10.1016/j.precamres.2017.09.023. [CrossRef] [Google Scholar]
- Reis H.L.S. (2018) Gás natural, Recursos Minerais de Minas Gerais (CODEMGE), Belo Horizonte, Available at http://recursomineralmg.codemge.com.br/substancias-minerais/gas-natural/#ANP2018. [Google Scholar]
- Roche V., Geymond U., Boka-Mene M., Delcourt N., Portier E., Moretti I. (2024) The Damara Belt in Namibia: a new continental hydrogen play, Sci. Rep. 14, 11655. https://doi.org/10.1038/s41598-024-62538-6. [CrossRef] [Google Scholar]
- Sgarbi P.B.A., Valenca J. G. (1995) Mineral and rock chemistry of Mata da Corda Kamafugitic Rocks (Minas Gerais State, Brazil), An. Acad. Bras. Ciênc. 57, 2, 257–270. [Google Scholar]
- Teixeira W., Oliveira E.P., Marques L.S. (2017) Nature and evolution of the Archean Crust of the São Francisco Craton, in: Heilbron M., Cordani U., Alkmim F. (eds),São Francisco Craton, Eastern Brazil. Regional geology reviews, Springer, Cham, pp. 29–56. https://doi.org/10.1007/978-3-319-01715-0_3. [CrossRef] [Google Scholar]
- Tribaldos V.R., White N.J., Roberts G. G., Hoggard M.J. (2017) Spatial and temporal uplift history of South America from calibrated drainage analysis, Geochem. Geophys. Geosyst. 18, 6, 2321–2353. https://doi.org/10.1002/2017GC006909. [CrossRef] [Google Scholar]
- Truche L., Joubert G., Dargent M., Martz P., Cathelineau M., Rigaudier T., Quirt D. (2018) Clay minerals trap hydrogen in the Earth’s crust: Evidence from the Cigar Lake uranium deposit, Athabasca, Earth Planet. Sci. Lett. 493, 186–197. https://doi.org/10.1016/j.epsl.2018.04.038. [CrossRef] [Google Scholar]
- Vale Annual Report (2023) Formulário de Relatório anual 20-F, VALE S.A., Rio de Janeiro. Available at https://ri-vale.mz-sites.com/en/information-to-the-market/annual-reports/20-f-form/. [Google Scholar]
- Zalán P.V., Silva P.C.R. (2007) Bacia de São Francisco, Bol. Geociencias Petrobras 15, 2, 561–571. [Google Scholar]
- Zgonnik V. (2020) The occurrence and geoscience of natural hydrogen: a comprehensive review, Earth Sci. Rev. 203, 103140. https://doi.org/10.1016/j.earscirev.2020.103140. [CrossRef] [Google Scholar]
- Zgonnik V., Beaumont V., Deville E., Larin N., Pillot D., Farrell K. (2015) Evidence for natural molecular hydrogen seepage associated with Carolina bays (surficial, ovoid depressions on the Atlantic Coastal Plain, Province of the USA), Earth Planet. Sci. Lett. 2, 31. https://doi.org/10.1186/s40645-015-0062-5. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.