Open Access
Issue |
Sci. Tech. Energ. Transition
Volume 79, 2024
|
|
---|---|---|
Article Number | 94 | |
Number of page(s) | 20 | |
DOI | https://doi.org/10.2516/stet/2024088 | |
Published online | 21 November 2024 |
- Yousuf M.U., Umair M., Uzair M. (2022) Estimating the average diffuse solar radiation based on multiple parameters: a case study of arid climate zone of Pakistan. Int. J. Ambient Energy 43(1), 1615–1625. [CrossRef] [Google Scholar]
- State of Industry Report (2022). https://www.nepra.org.pk/publications/State%20of%20Industry%20Reports/State%20of%20Industry%20Report%202022.pdf. [Google Scholar]
- Yousuf M.U., Saleem M.U., Umair M.(2024) Evaluating the 7E impact of solar photovoltaic power plants at airports: a case study. Sci. Technol. Energy Trans. 79, 19. [Google Scholar]
- Hussain F., Maeng S.-J., Cheema M.J.M., Anjum M.N., Afzal A., Azam M., Wu R.-S., Noor R.S., Umair M., Iqbal T. (2023) Solar irrigation potential, key issues and challenges in Pakistan. Water 15(9), 1727. [CrossRef] [Google Scholar]
- Tareen W.U.K., Anjum Z., Yasin N., Siddiqui L., Farhat I., Malik S.A., Mekhilef S., Seyedmahmoudian M., Horan B., Darwish M. (2018) The prospective non-conventional alternate and renewable energy sources in Pakistan–a focus on biomass energy for power generation, transportation, and industrial fuel. Energies 11(9), 2431. [CrossRef] [Google Scholar]
- Ramli M.A., Hiendro A., Sedraoui K., Twaha S. (2015) Optimal sizing of grid-connected photovoltaic energy system in Saudi Arabia. Renew. Energy 75, 489–495. [CrossRef] [Google Scholar]
- Khalid A.M., Mitra I., Warmuth W., Schacht V. (2016) Performance ratio – crucial parameter for grid connected PV plants. Renew. Sustain. Energy Rev. 65, 1139–1158. [CrossRef] [Google Scholar]
- Uwho K., Idoniboyeobu D., Amadi H. (2022) Design and simulation of 500 kW grid connected PV system for faculty of engineering, rivers state university using pvsyst software. Iconic Res. Eng. J. 5(8), 2456–8880. [Google Scholar]
- Yousuf M.U., Umair M., Rehan M., Umrani Z.A. (2024) Effect of adjusting orientation for solar energy applications in multiple climatic zones. Mehran Univ. Res. J. Eng. Technol. 43(1), 70–81. [CrossRef] [Google Scholar]
- Kumar M., Kumar A. (2017) Performance assessment and degrada-2 tion analysis of solar photovoltaic technologies: A review. Renew. Sustain. Energy Rev. 78, 554–587. [CrossRef] [Google Scholar]
- Sreenath S., Sudhakar K., Yusop A. (2021) 7E analysis of a conceptual utility-scale land-based solar photovoltaic power plant. Energy 219, 119610. [CrossRef] [Google Scholar]
- Yaghoubirad M., Azizi N., Ahmadi A., Zarei Z., Moosavian S.F. (2022) Performance assessment of a solar PV module for different climate classifications based on energy, exergy, economic and environmental parameters. Energy Rep. 8, 15712–15728. [CrossRef] [Google Scholar]
- Wassie Y.T., Adaramola M.S. (2021)Socio-economic and environmental impacts of rural electrification with Solar Photovoltaic systems: Evidence from southern Ethiopia. Energy Sustain. Dev. 60, 52–66. [CrossRef] [Google Scholar]
- Imam A.A., Al-Turki Y.A. (2019) Techno-economic feasibility assessment of grid-connected PV systems for residential buildings in Saudi Arabia – a case study. Sustainability 12(1), 262. [CrossRef] [Google Scholar]
- Yousuf M.U., Al-Bahadly I., Avci E. (2022) Wind speed prediction for small sample dataset using hybrid first-order accumulated generating operation-based double exponential smoothing model. Energy Sci. Eng. 10(3), 726–739. [CrossRef] [Google Scholar]
- Yousuf M.U., Abbasi M.A., Kashif M., Umair M. (2022) Energy, exergy, economic, environmental, energoeconomic, exergoeconomic, and enviroeconomic (7E) analyses of wind farms: A case study of Pakistan. Environ. Sci. Pollut. Res. 29(44), 67301–67324. [CrossRef] [PubMed] [Google Scholar]
- Shami S.H., Ahmad J., Zafar R., Haris M., Bashir S. (2016) Evaluating wind energy potential in Pakistan’s three provinces, with proposal for integration into national power grid. Renew. Sustain. Energy Rev. 53, 408–421. [CrossRef] [Google Scholar]
- Ali S., Lee S.-M., Jang C.-M. (2017) Techno-economic assessment of wind energy potential at three locations in South Korea using long-term measured wind data. Energies 10(9), 1442. [CrossRef] [Google Scholar]
- Murthy K., Rahi O. (2017) A comprehensive review of wind resource assessment. Renew. Sustain. Energy Rev. 72, 1320–1342. [CrossRef] [Google Scholar]
- Shoaib M., Siddiqui I., Rehman S., Khan S., Alhems L.M. (2019) Assessment of wind energy potential using wind energy conversion system. J. Cleaner Prod. 216, 346–360. [CrossRef] [Google Scholar]
- Hassan Q., Algburi S., Sameen A.Z., Salman H.M., Jaszczur M. (2023) A review of hybrid renewable. Results Eng. 20, 101621. [CrossRef] [Google Scholar]
- Li L., Lin J., Wu N., Xie S., Meng C., Zheng Y., Wang X., Zhao Y. (2022) Review and outlook on the international renewable energy development. Energy Built Environ. 3(2), 139–157. [CrossRef] [Google Scholar]
- Memon S.A., Upadhyay D.S., Patel R.N. (2021) Optimal configuration of solar and wind-based hybrid renewable energy system with and without energy storage including environmental and social criteria: A case study. J. Energy Storage 44, 103446. [CrossRef] [Google Scholar]
- Yanine F.F., Sauma E.E. (2013) Review of grid-tie micro-generation systems without energy storage: Towards a new approach to sustainable hybrid energy systems linked to energy efficiency. Renew. Sustain. Energy Rev. 26, 60–95. [CrossRef] [Google Scholar]
- Capraz O., Gungor A., Mutlu O., Sagbas A. (2020) Optimal sizing of grid-connected hybrid renewable energy systems without storage: a generalized optimization model. Energy Sources, Part A: Recov. Utili. Environ. Eff. 46, 1, 13317–13350. [Google Scholar]
- Singh R., Bansal R.C. (2018) Review of HRESs based on storage options, system architecture and optimisation criteria and methodologies. IET Renew. Power Gen 12(7), 747–760. [CrossRef] [Google Scholar]
- Mossa M.A., Gam O., Bianchi N. (2022) Performance enhancement of a hybrid renewable energy system accompanied with energy storage unit using effective control system. Int. J. Robot. Control Syst. 2(1), 140–171. [CrossRef] [Google Scholar]
- Tazay A.F., Ibrahim A.M.A., Noureldeen O., Hamdan I. (2020) Modeling, control, and performance evaluation of grid-tied hybrid PV/wind power generation system: Case study of Gabel El-Zeit region, Egypt. IEEE Access 8, 96528–96542. [CrossRef] [Google Scholar]
- Taghavifar H., Zomorodian Z.S. (2021) Techno-economic viability of on grid micro-hybrid PV/wind/Gen system for an educational building in Iran. Renew. Sustain. Energy Rev. 143, 110877. [CrossRef] [Google Scholar]
- Alharthi Y.Z., Siddiki M.K., Chaudhry G.M. (2018) Resource assessment and techno-economic analysis of a grid-connected solar PV-wind hybrid system for different locations in Saudi Arabia. Sustainability 10(10), 3690. [CrossRef] [Google Scholar]
- Aydin N.Y., Kentel E., Duzgun H.S. (2013) GIS-based site selection methodology for hybrid renewable energy systems: A case study from western Turkey. Energy Conv. Manage. 70, 90–106. [CrossRef] [Google Scholar]
- Renewable Energy Resource Mapping in Pakistan, Energy Sector Management Assistance Program, The World Bank. https://www.esmap.org/node/3058. [Google Scholar]
- Remund J., Müller S., Schmutz M., Graf P. (2020) Meteonorm version 8. METEOTEST. https://www.meteotest.com. [Google Scholar]
- Pedersen M.M., Forsting A.M., van der Laan P., Riva R., Roman L.A., Risco J.C., Friis-Møller M., Quick J., Christiansen J.P.S., Rodrigues R.V. (2023) PyWake 2.5. 0: An open-source wind farm simulation tool. https://gitlab.windenergy.dtu.dk/TOPFARM/PyWake [Google Scholar]
- Bastankhah M., Porté-Agel F. (2014) A new analytical model for wind-turbine wakes. Renew. Energy 70, 116–123. [CrossRef] [Google Scholar]
- Zong H., Porté-Agel F. (2020) A momentum-conserving wake superposition method for wind farm power prediction. J. Fluid Mech. 889, A8. [CrossRef] [MathSciNet] [Google Scholar]
- pyproj. https://pyproj4.github.io/pyproj/stable/index.html. [Google Scholar]
- Asgari E., Ehyaei M. (2015) Exergy analysis and optimisation of a wind turbine using genetic and searching algorithms. Int. J. Exergy 16(3), 293–314. [CrossRef] [Google Scholar]
- PVsyst. [Google Scholar]
- Kumbaroğlu G.S., Çamlibel M.E., Avcı C. (2021) Techno-economic comparison of bifacial vs monofacial solar panels. Eng. Struct. Technol. 13(1), 7–18. [Google Scholar]
- García H.A., Duke A.R., Flores H.V. (2021) Techno-economic comparison between photovoltaic systems with solar trackers and fixed structure in “El Valle de Sula”, Honduras, in IOP Conference Series: Earth and Environmental Science, IOP Publishing. [Google Scholar]
- Schlömer S., Bruckner T., Fulton L., Hertwich E., McKinnon A., Perczyk D., Roy J., Schaeffer R., Sims R., Smith P. (2014) Annex III: Technology-specific cost and performance parameters, in Climate change 2014: Mitigation of climate change: Contribution of working group III to the fifth assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, pp. 1329–1356. [Google Scholar]
- Brander M., Sood A., Wylie C., Haughton A., Lovell J. (2011) Technical Paper Electricity-specific emission factors for grid electricity, Ecometrica, https://Emissionfactors.com. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.