Issue
Sci. Tech. Energ. Transition
Volume 79, 2024
Decarbonizing Energy Systems: Smart Grid and Renewable Technologies
Article Number 43
Number of page(s) 14
DOI https://doi.org/10.2516/stet/2024035
Published online 30 July 2024
  • Wang X., et al. (2022) Research progress and prospects of advanced power generation technology under the goal of carbon emission peak and carbon neutrality, Therm. Power Gen. 51, 1, 52–59. [Google Scholar]
  • Chong C.T., et al. (2022) Post COVID-19 energy sustainability and carbon emissions neutrality, Energy 241, 122801. [CrossRef] [PubMed] [Google Scholar]
  • Wang D., Xue X., Wang Y. (2021) Overcapacity risk of China’s coal power industry: a comprehensive assessment and driving factors, Sustainability 13, 3, 1426. [CrossRef] [Google Scholar]
  • Bin O., et al. (2015) Calculation and evaluation methodology of transport energy consumption and carbon emission—the case of Jiangsu Province, Soft Sci. 29, 1, 139–144. [Google Scholar]
  • Lu Y., Chen X. (2023) Digital economy, new-type urbanization, and carbon emissions: evidence from China, Environ. Prog. Sustain. Energy 42, 3, e14045. [CrossRef] [Google Scholar]
  • Zhou S., et al. (2023) A data-driven method to monitor carbon dioxide emissions of coal-fired power plants, Energies 16, 4, 1646. [CrossRef] [Google Scholar]
  • Wang X., et al. (2022) Evaluating the data quality of continuous emissions monitoring systems in China, J. Environ. Manag. 314, 115081. [CrossRef] [Google Scholar]
  • Zhao R., et al. (2014) Carbon emission and carbon footprint of different industrial spaces in different regions of China, Singapore: Springer. [Google Scholar]
  • Shang C., Zhang Z. (2010) Assessment of life-cycle carbon emission for buildings, J. Eng. Manage. 24, 1, 7–12. [Google Scholar]
  • Yan X., et al. (2012) Correlation analysis of economic development and carbon footprint in Chongqing City, J. Southwest China Normal Univ. (Nat. Sci. Ed.) 37, 6, 167–173. [Google Scholar]
  • Zhang N., et al. (2023) Carbon measurement method and carbon system for whole chain of power system[J], Autom. Electr. Power Syst. 47, 9, 2–12. [Google Scholar]
  • Zhou C., et al. (2023) Accounting CO2 emissions of the cement industry: based on an electricity-carbon coupling analysis, Energies 16, 11, 4453. [CrossRef] [Google Scholar]
  • Chamandoust H., Bahramara S., Derakhshan G. (2020) Day-ahead scheduling problem of smart micro-grid with high penetration of wind energy and demand side management strategies, Sustain. Energy Technol. Assess. 40, 100747. [Google Scholar]
  • Chamandoust H., Derakhshan G., Bahramara S. (2020) Multi-objective performance of smart hybrid energy system with Multi-optimal participation of customers in day-ahead energy market, Energy Build. 216, 109964. [CrossRef] [Google Scholar]
  • Chamandoust H., et al. (2020) Multi-objectives optimal scheduling in smart energy hub system with electrical and thermal responsive loads, Environ. Clim. Technol. 24, 1, 209–232. [CrossRef] [Google Scholar]
  • Chamandoust H., et al. (2019) Tri-objective optimal scheduling of smart energy hub system with schedulable loads, J. Clean. Prod. 236, 117584. [CrossRef] [Google Scholar]
  • Chamandoust H., et al. (2020) Tri-objective scheduling of residential smart electrical distribution grids with optimal joint of responsive loads with renewable energy sources, J. Energy Storage 27, 101112. [CrossRef] [Google Scholar]
  • Xiang X., et al. (2022) Python-LMDI: a tool for index decomposition analysis of building carbon emissions, Buildings 12, 1, 83. [CrossRef] [Google Scholar]
  • He Z., Zhou Y., Liu Y. (2020) System dynamics simulation on China’s energy consumption in 2050: Based on the policy scenarios of key industries, J. Nat. Resour. 35, 11, 2696–2707. [Google Scholar]
  • Jiang H., Zhang H., Shi X. (2022) Refined production simulation and operation cost evaluation for power system with high proportion of renewable energy, Energy Rep. 8, 108–118. [CrossRef] [Google Scholar]
  • Yuan K., et al. (2023) Exploration of low-cost green transition opportunities for China’s power system under dual carbon goals, J. Clean. Prod. 414, 137590. [CrossRef] [Google Scholar]
  • Yu Y., et al. (2022) Implications of power industry marketization for sustainable generation portfolios in China, J. Clean. Prod. 378, 134541. [CrossRef] [Google Scholar]
  • Li Y.-Y., Li H. (2022) China’s inter-regional embodied carbon emissions: an industrial transfer perspective, Environ. Sci. Pollut. Res. 29, 3, 4062–4075. [CrossRef] [PubMed] [Google Scholar]
  • Chi Y., et al. (2022) Driving factors of CO2 emissions in China’s power industry: relative importance analysis based on spatial durbin model, Energies 15, 7, 2631. [CrossRef] [Google Scholar]
  • Zhao F., Qian S., Zhao X. (2023) Collaborative governance of carbon reduction in urban agglomerations in the China Yangtze River Economic Belt based on a spatial association network, Ecol. Indic. 154, 110663. [CrossRef] [Google Scholar]
  • Wang L., Li K. (2022) Research on renewable energy consumption and emission reduction in power market based on bi-level decision making in China, Energy 260, 125119. [CrossRef] [Google Scholar]
  • Wu Y., et al. (2022) Research on greenhouse gas emissions accounting methods in environmental impact assessment of construction projects: a case of thermal power project, J. Environ. Eng. Technol. 12, 6, 1890–1897. [Google Scholar]
  • Dong B. (2019) Study on the relationship between carbon emissions, industrial structure and economic growth, Beijing: Northeast University of Finance and Economics. [Google Scholar]
  • Zhang L., et al. (2020) Minimizing energy consumption scheduling algorithm of workflows with cost budget constraint on heterogeneous cloud computing systems, IEEE Access 8, 205099–205110. [CrossRef] [Google Scholar]
  • Yang Xiaoting S.H.U.J. (2021) Expansion programming of integrated energy system for large industrial user considering the CCHP, Elect. Power Constr. 42, 2, 107–115. [Google Scholar]
  • Bui V.-H., et al. (2021) Optimal sizing of energy storage system for operation of wind farms considering grid-code constraints, Energies 14, 17, 5478. [CrossRef] [Google Scholar]
  • Dai L., Wang M. (2020) Study on the influence of carbon emission constraints on the performance of thermal power enterprises, Environ. Sci. Pollut. Res. 27, 24, 30875–30884. [CrossRef] [PubMed] [Google Scholar]
  • Tang B.-J., et al. (2019) Spatial and temporal uncertainty in the technological pathway towards a low-carbon power industry: a case study of China, J. Clean. Prod. 230, 720–733. [CrossRef] [Google Scholar]
  • Yu B., et al. (2021) Research on China’s CO2 emission pathway under carbon neutral target, J. Beijing Inst. Technol. (Soc. Sci. Ed.) 23, 2, 17–24. [Google Scholar]
  • Yang Z., et al. (2022) The impact of economic growth, industrial transition, and energy intensity on carbon dioxide emissions in China, Sustainability 14, 9, 4884. [CrossRef] [Google Scholar]
  • Borsato B., Plastino A., Merschmann L. (2008) K-NN: estimating an adequate value for parameter K. In 10th international conference on enterprise information systems. Barcelona, Spain. [Google Scholar]
  • Brzezińska A.N., Horyń C. (2021) Outliers in Covid 19 data based on rule representation – the analysis of LOF algorithm, Proc. Comput. Sci. 192, 3010–3019. [CrossRef] [Google Scholar]
  • Ang B.W., Liu F.L. (2001) A new energy decomposition method: perfect in decomposition and consistent in aggregation, Energy 26, 6, 537–548. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.