Issue
Sci. Tech. Energ. Transition
Volume 79, 2024
Decarbonizing Energy Systems: Smart Grid and Renewable Technologies
Article Number 38
Number of page(s) 12
DOI https://doi.org/10.2516/stet/2024036
Published online 02 July 2024
  • Ameen M., Ahmad M., Zafar M., Munir M., Abbas M.M., Sultana S., Elkhatib S.E., Soudagar M.E., Kalam M. (2022) Prospects of catalysis for process sustainability of eco-green biodiesel synthesis via transesterification: A state-of-the-art review, Sustainability 14, 12, 7032. [CrossRef] [Google Scholar]
  • Arenas E., Rodriguez Palacio M., Juantorena A., Fernando S., Sebastian P. (2017) Microalgae as a potential source for biodiesel production: Techniques, methods, and other challenges, Int. J. Energy Res. 41, 6, 761–789. [CrossRef] [Google Scholar]
  • Aslan V., Eryilmaz T. (2020) Polynomial regression method for optimization of biodiesel production from black mustard (Brassica nigra L.) seed oil using methanol, ethanol, NaOH, and KOH, Energy 209, 118386. [CrossRef] [Google Scholar]
  • Awais M., Musmar S.A., Kabir F., Batool I., Rasheed M.A., Jamil F., Khan S.U., Tlili I. (2020) Biodiesel production from Melia azedarach and Ricinus communis oil by transesterification process, Catalysts 10, 4, 427. [CrossRef] [Google Scholar]
  • Basumatary B., Nath B., Kalita P., Das B., Basumatary S. (2020) Yellow oleander (Thevetia peruviana) seed as a potential bioresource for industrial applications, Mini-Rev. Org. Chem. 17, 7, 855–871. [CrossRef] [Google Scholar]
  • Budhraja N., Pal A., Mishra R. (2022) Parameter optimization for enhanced biodiesel yield from Linum usitatissimum oil through solar energy assistance, Biomass Conversion Biorefinery, 1–16. [Google Scholar]
  • Cavalcante F.T.T., Neto F.S., de Aguiar Falcão I.R., da Silva Souza J.E., de Moura Junior L.S., da Silva Sousa P., Rocha T.G., de Sousa I.G., de Lima Gomes P.H., de Souza M.C. (2021) Opportunities for improving biodiesel production via lipase catalysis, Fuel 288, 119577. [CrossRef] [Google Scholar]
  • Changmai B., Vanlalveni C., Ingle A.P., Bhagat R., Rokhum S.L. (2020) Widely used catalysts in biodiesel production: A review, RSC Adv. 10, 68, 41625–41679. [CrossRef] [Google Scholar]
  • Che Hamzah N.H., Khairuddin N., Siddique B.M., Hassan M.A. (2020) Potential of Jatropha curcas L. as biodiesel feedstock in Malaysia: A concise review, Processes 8, 7, 786. [CrossRef] [Google Scholar]
  • de Oliveira D., Di Luccio M., Faccio C., Rosa C.D., Bender J.P., Lipke N., de Oliveira J.V. (2005) Optimization of alkaline transesterification of soybean oil and castor oil for biodiesel production, in: Paper presented at the Twenty-sixth symposium on biotechnology for fuels and chemicals. [Google Scholar]
  • Demisu D.G. (2021) Factors affecting biodiesel production from non-edible vegetable oil via base-catalyzed transesterification process: Synthesis, Int. J. Sustain. Green Energy 10, 3, 85–91. [CrossRef] [Google Scholar]
  • Deora P.S., Verma Y., Muhal R.A., Goswami C., Singh T. (2022) Biofuels: An alternative to conventional fuel and energy source, Mater. Today Proc. 48, 1178–1184. [CrossRef] [Google Scholar]
  • Ejeromedoghene O. (2021) Acid-catalyzed transesterification of palm kernel oil (PKO) to biodiesel, Mater. Today Proc. 47, 1580–1583. [CrossRef] [Google Scholar]
  • Farnetti E., Di Monte R., Kašpar J. (2009) Homogeneous and heterogeneous catalysis, Inorg. Bio-inorg. Chem. 2, 6, 50–86. [Google Scholar]
  • Gamba M., Asllanaj E., Raguindin P.F., Glisic M., Franco O.H., Minder B., Bussler W., Metzger B., Kern H., Muka T. (2021) Nutritional and phytochemical characterization of radish (Raphanus sativus): A systematic review, Trends Food Sci. Technol. 113, 205–218. [CrossRef] [Google Scholar]
  • Hanif M., Bhatti I.A., Zahid M., Shahid M. (2022) Production of biodiesel from non-edible feedstocks using environment friendly nano-magnetic Fe/SnO catalyst, Sci. Rep. 12, 1, 16705. [CrossRef] [Google Scholar]
  • Hasni K., Ilham Z., Dharma S., Varman M. (2017) Optimization of biodiesel production from Brucea javanica seeds oil as novel non-edible feedstock using response surface methodology, Energy Convers. Manage. 149, 392–400. [CrossRef] [Google Scholar]
  • Islam A.K.M.A., Chakrabarty S., Yaakob Z., Ahiduzzaman M., Islam A.K.M.M. (2021) Koroch (Pongamia pinnata): A promising unexploited resources for the tropics and subtropics, in: Forest Biomass-From Trees to Energy, IntechOpen. [Google Scholar]
  • Jena J., Gupta A.K. (2012) Ricinus communis Linn: A phytopharmacological review, Int. J. Pharm. Pharm. Sci. 4, 4, 25–29. [Google Scholar]
  • Jiang H., Wang X.-J., Yang L., Zhang J.-X., Hou A.-J., Man W.-J., Wang S., Yang B.Y., Chan K., Wang Q.H., Kuang H.X. (2020) The fruits of Xanthium sibiricum Patr: A review on phytochemistry, pharmacological activities, and toxicity, World J. Tradit. Chin. Med. 6, 4, 408–422. [Google Scholar]
  • Kalita P., Basumatary B., Saikia P., Das B., Basumatary S. (2022) Biodiesel as renewable biofuel produced via enzyme-based catalyzed transesterification, Energy Nexus 6, 100087. [CrossRef] [Google Scholar]
  • Keera S., El Sabagh S., Taman A.J. (2018) Castor oil biodiesel production and optimization, Egypt. J. Petrol. 27, 4, 979–984. [CrossRef] [Google Scholar]
  • Leung D.Y., Wu X., Leung M.K.H. (2010) A review on biodiesel production using catalyzed transesterification, Appl. Energy 87, 4, 1083–1095. [CrossRef] [Google Scholar]
  • Li Y., Qiu F., Yang D., Sun P., Li X. (2012) Transesterification of soybean oil and analysis of bioproduct, Food Bioprod. Process. 90, 2, 135–140. [CrossRef] [Google Scholar]
  • Malabadi R.B., Kolkar K.P., Chalannavar R.K. (2023) Industrial Cannabis sativa: Hemp oil for biodiesel production, Magna Sci. Adv. Res. Rev. 9, 2, 022–035. [CrossRef] [Google Scholar]
  • Mandari V., Devarai S.K. (2022) Biodiesel production using homogeneous, heterogeneous, and enzyme catalysts via transesterification and esterification reactions: A critical review, BioEnergy Res. 15, 2, 935–961.https://doi.org/10.1007/s12155-021-10333-w. [CrossRef] [PubMed] [Google Scholar]
  • Meher L.C., Sagar D.V., Naik S. (2006) Technical aspects of biodiesel production by transesterification—A review, Renew. Sustain. Energy Rev. 10, 3, 248–268. [CrossRef] [Google Scholar]
  • Mukhtar A., Saqib S., Lin H., Shah M.U.H., Ullah S., Younas M. (2022) Current status and challenges in the heterogeneous catalysis for biodiesel production, Renew. Sustain. Energy Rev. 157, 112012. [CrossRef] [Google Scholar]
  • Munir M., Ahmad M., Rehan M., Saeed M., Lam S.S., Nizami A., Zafar M. (2021) Production of high quality biodiesel from novel non-edible Raphnus raphanistrum L. seed oil using copper modified montmorillonite clay catalyst, Environ. Res. 193, 110398. [CrossRef] [Google Scholar]
  • Naik B. (2018) Botanical descriptions of castor bean, in The Castor Bean Genome, edn. 1, Springer Nature Switzerland AG, pp. 1–14. Series ISSN: 2199-4781, XXV, 272. https://doi.org/10.1007/978-3-319-97280-0. [Google Scholar]
  • Neupane D. (2022) Biofuels from renewable sources, a potential option for biodiesel production, Bioengineering (Basel) 10, 1, https://doi.org/10.3390/bioengineering10010029. [PubMed] [Google Scholar]
  • Panchal B., Chang T., Kang Y., Qin S., Zhao Q., Wang J., Sun Y. (2020) Synthesis of polymer based catalyst: Optimization and kinetics modeling of the transesterification of Pistacia chinensis oil with diethyl carbonate using acidic ionic liquids, Fuel 276, 118121. [CrossRef] [Google Scholar]
  • Parida S., Singh M., Pradhan S. (2022) Biomass wastes: A potential catalyst source for biodiesel production, Bioresour. Technol. Rep. 18, 101081. [CrossRef] [Google Scholar]
  • Rizwanul Fattah I., Ong H., Mahlia T., Mofijur M., Silitonga A., Rahman S.A., Ahmad A. (2020) State of the art of catalysts for biodiesel production, Front. Energy Res. 8, 101. [CrossRef] [Google Scholar]
  • Safaripour M., Saidi M., Moradi P. (2023) Ex-situ biodiesel production from Simmondsia chinensis (Jojoba) biomass: Process evaluation and optimization, J. Indust. Eng. Chem. 124, 392–401. [CrossRef] [Google Scholar]
  • Sánchez N., Sánchez R., Encinar J.M., González J.F., Martínez G. (2015) Complete analysis of castor oil methanolysis to obtain biodiesel, Fuel 147, 95–99. [CrossRef] [Google Scholar]
  • Sharma H.B., Sarmah A.K., Dubey B. (2020) Hydrothermal carbonization of renewable waste biomass for solid biofuel production: A discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar, Renew. Sustain. Energy Rev. 123, 109761. [CrossRef] [Google Scholar]
  • Singh C.S., Kumar N., Gautam R. (2021) Supercritical transesterification route for biodiesel production: Effect of parameters on yield and future perspectives, Environ. Prog. Sustain. Energy 40, 6, e13685. [CrossRef] [Google Scholar]
  • Sudalai S., Rupesh K., Devanesan M., Arumugam A. (2023) A critical review of Madhuca indica as an efficient biodiesel producer: Towards sustainability, Renew. Sustain. Energy Rev. 188, 113811. [CrossRef] [Google Scholar]
  • Takase M., Essandoh P.K., Kipkoech R. (2021) New non-edible Allanblackia parviflora seed oil as an alternative feedstock for biodiesel production and characterization of the fuel, Discov. Sustain. 2, 1–9. [CrossRef] [Google Scholar]
  • Tayari S., Abedi R., Tahvildari K. (2020) Experimental investigation on fuel properties and engine characteristics of biodiesel produced from Eruca sativa, SN Appl. Sci. 2, 1, 2. [CrossRef] [Google Scholar]
  • Thiruvengadaravi K., Nandagopal J., Baskaralingam P., Bala V.S.S., Sivanesan S. (2012) Acid-catalyzed esterification of karanja (Pongamia pinnata) oil with high free fatty acids for biodiesel production, Fuel 98, 1–4. [CrossRef] [Google Scholar]
  • Traviss N., Thelen B.A., Ingalls J.K., Treadwell M.D. (2012) Evaluation of biodiesel’s impact on real-world occupational and environmental particulate matter exposures at a municipal facility in Keene, NH, Air Qual. Atmos. Health 5, 101–114. [CrossRef] [PubMed] [Google Scholar]
  • Van Gerpen J., Shanks B., Pruszko R., Clements D., Knothe G. (2004) Biodiesel Analytical Methods: August 2002–January 2004. Retrieved from. [CrossRef] [Google Scholar]
  • Vilas Bôas R.N., Mendes M.F. (2022) A review of biodiesel production from non-edible raw materials using the transesterification process with a focus on influence of feedstock composition and free fatty acids, J. Chilean Chem. Soc. 67, 1, 5433–5444. [CrossRef] [Google Scholar]
  • Yeboah A., Ying S., Lu J., Xie Y., Amoanimaa-Dede H., Boateng K.G.A., Chen M., Yin X. (2020) Castor oil (Ricinus communis): A review on the chemical composition and physicochemical properties, Food Sci. Technol. 41, 399–413. [Google Scholar]
  • Yun Y. (2020) Alcohol fuels: Current status and future direction, in Alcohol Fuels – Current Technologies and Future Prospect, p. 136. ISBN: 978-1-78985-044-4, PRINT ISBN: 978-1-78985-043-7, EBOOK (PDF) ISBN: 978-1-78985-654-5, 11 March 2020. https://doi.org/10.5772/intechopen.77645. [Google Scholar]
  • Zulqarnain Ayoub M., Yusoff M. H. M., Nazir M. H., Zahid I., Ameen M., Sher F., Floresyona D., Budi Nursanto E. (2021) A comprehensive review on oil extraction and biodiesel production technologies, Sustainability 13, 2, 788. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.