Open Access
Issue
Sci. Tech. Energ. Transition
Volume 79, 2024
Article Number 37
Number of page(s) 15
DOI https://doi.org/10.2516/stet/2024031
Published online 27 June 2024
  • Fangfang F., Alagumalai A., Mahian O. (2021) Sustainable biodiesel production from waste cooking oil: ANN modeling and environmental factor assessment, Sustain. Energy Technol. Assess 46, 101265. [Google Scholar]
  • Qadeer M.U., Ayoub M., Komiyama M., Daulatzai M.U.K., Mukhtar A., Saqib S., Ullah S., Qyyum M.A., Asif S., Bokhari A. (2021) Review of biodiesel synthesis technologies, current trends, yield influencing factors and economical analysis of supercritical process, J. Clean. Prod. 309, 127388. [CrossRef] [Google Scholar]
  • Helmiyati H., Budiman Y., Abbas G.H., Dini F.W., Khalil M. (2021) Highly efficient synthesis of biodiesel catalyzed by a cellulose@hematite-zirconia nanocomposite, Heliyon 7, 3, e06622. [CrossRef] [PubMed] [Google Scholar]
  • Silva G.S., Marques E.L.S., Dias J.C.T., Lobo I.P., Gross E., Brendel M., da Cruz R.S., Rezende R.P. (2012) Biodegradability of soy biodiesel in microcosm experiments using soil from the Atlantic Rain Forest, Appl. Soil Ecol. 55, 27–35. [CrossRef] [Google Scholar]
  • Çelebi K., Uludamar E., Tosun E., Yıldızhan Ş., Aydın K., Özcanlı M. (2017) Experimental and artificial neural network approach of noise and vibration characteristic of an unmodified diesel engine fuelled with conventional diesel, and biodiesel blends with natural gas addition, Fuel 197, 159–173. [CrossRef] [Google Scholar]
  • Shojae K., Mahdavian M., Khoshandam B., Karimi-Maleh H. (2021) Improving of CI engine performance using three different types of biodiesel, Process Saf. Environ. Prot. 149, 977–993. [Google Scholar]
  • Felayati F.M., Semin, Cahyono B., Bakar R.A., Birouk M. (2021) Performance and emissions of natural gas/diesel dual-fuel engine at low load conditions: Effect of natural gas split injection strategy, Fuel 300, 121012. [CrossRef] [Google Scholar]
  • Shen Z., Wang X., Zhao H., Lin B., Shen Y., Yang J. (2021) Numerical investigation of natural gas-diesel dual-fuel engine with different piston geometries and radial clearances, Energy 220, 119706. [CrossRef] [Google Scholar]
  • Tosun E., Özcanlı M. (2021) Hydrogen enrichment effects on performance and emission characteristics of a diesel engine operated with diesel-soybean biodiesel blends with nanoparticle addition, JESTECH 24, 3, 648–654. [Google Scholar]
  • Keskin A., Gürü M., Altiparmak D. (2007) Biodiesel production from tall oil with synthesized Mn and Ni based additives: Effects of the additives on fuel consumption and emissions, Fuel 86, 7–8, 1139–1143. [CrossRef] [Google Scholar]
  • Yang W.W., Tang X.Y., Ma X., Li J.C., Xu C., He Y.L. (2023) Rapid prediction, optimization and design of solar membrane reactor by data-driven surrogate model, Energy 285, 129432. [CrossRef] [Google Scholar]
  • Petcharat N., Wiangkham A., Pichitkul A., Tantrairatn S., Aengchuan P., Bureerat S., Banpap S., Khunthongplatprasert P., Ariyarit A. (2023) The multi-objective optimization of material properties of 3D print onyx/carbon fiber composites via surrogate model, Mater. Today Commun. 37, 107362. [CrossRef] [Google Scholar]
  • Aubeelack H., Segonds S., Bes C., Druot T., Brezillon J., Bérard A., Duffau M., Gallant G. (2023) Surrogate model development for optimized blended-wing-body aerodynamics, J. Aircraft 60, 2, 437–448. [CrossRef] [Google Scholar]
  • Das S., Kashyap D., Bora B.J., Kalita P., Kulkarni V. (2021) Thermo-economic optimization of a biogas-diesel dual fuel engine as remote power generating unit using response surface methodology, TSEP 24, 100935. [Google Scholar]
  • Ye W., Wang X., Liu Y., Chen J. (2021) Analysis and prediction of the performance of free- piston Stirling engine using response surface methodology and artificial neural network, Appl. Therm. Eng. 188, 116557. [CrossRef] [Google Scholar]
  • Singh Y., Sharma A., Tiwari S., Singla A. (2019) Optimization of diesel engine performance and emission parameters employing cassia tora methyl esters-response surface methodology approach, Energy 168, 909–918. [CrossRef] [Google Scholar]
  • Adam I.K., Aziz A.A.R., Yusup S., Heikal M.R. (2016) Optimization of performance and emissions of a diesel engine fuelled with rubber seed- palm biodiesel blends using response surface method, Asian J. Appl. Sci. 4, 2, 401–421. [Google Scholar]
  • Said Z., Le D.T.N., Sharma P., Dang V.H., Le H.S., Nguyen D.T., Bui T.A.E., Nguyen V.G. (2022) Optimization of combustion, performance, and emission characteristics of a dual-fuel diesel engine powered with microalgae-based biodiesel/diesel blends and oxyhydrogen, Fuel 326, 124987. [CrossRef] [Google Scholar]
  • Shirneshan A., Almassi M., Ghobadian B., Borghei A.M., Najafi G. (2016) Response surface methodology (RSM) based optimization of biodiesel-diesel blends and investigation of their effects on diesel engine operating conditions and emission characteristics, Environ. Eng. Manag. J. 15, 12, 2771–2780. [CrossRef] [Google Scholar]
  • Simsek S., Uslu S., Simsek H., Uslu G. (2021) Improving the combustion process by determining the optimum percentage of liquefied petroleum gas (LPG) via response surface methodology (RSM) in a spark ignition (SI) engine running on gasoline-LPG blends, Fuel Process Technol. 221, 106947. [CrossRef] [Google Scholar]
  • Singh T.S., Rajak U., Samuel O.D., Chaurasiya P.K., Natarajan K., Verma T.N., Nashine P. (2021) Optimization of performance and emission parameters of direct injection diesel engine fuelled with microalgae Spirulina (L.) – Response surface methodology and full factorial method approach, Fuel 285, 119103. [CrossRef] [Google Scholar]
  • Krishnamoorthy V., Dhanasekaran R., Rana D., Saravanan S., Kumar B.R. (2018) A comparative assessment of ternary blends of three bio-alcohols with waste cooking oil and diesel for optimum emissions and performance in a CI engine using response surface methodology, Energy Convers. Manag. 156, September 2017 337–357. [CrossRef] [Google Scholar]
  • Subbaiah M.V., Reddy S.S.K., Prasad B.D. (2022) Optimization of performance and emission characteristics of common direct injection diesel engine using response surface methodology, Mater. Today Proc. 68, 1294–1304. [CrossRef] [Google Scholar]
  • Kumar A.N., Kishore P.S., Brahma Raju K., Ashok B., Vignesh R., Jeevanantham A.K., Nanthagopal K., Tamilvanan A. (2020) Decanol proportional effect prediction model as additive in palm biodiesel using ANN and RSM technique for diesel engine, Energy 213, 119072. [CrossRef] [Google Scholar]
  • Sharma A., Singh Y., Singh N.K., Singla A. (2019) Sustainability of jojoba biodiesel/diesel blends for DI diesel engine applications- taguchi and response surface methodology concept, Ind. Crops. Prod. 139, 111587. [CrossRef] [Google Scholar]
  • Patel P.D., Lakdawala A., Patel R.N. (2016) Box–Behnken response surface methodology for optimization of operational parameters of compression ignition engine fuelled with a blend of diesel, biodiesel and diethyl ether, Biofuels 7, 2, 87–95. [CrossRef] [Google Scholar]
  • Ramachander J., Gugulothu S.K., Sastry G.R.K., Panda J.K., Siva Surya M. (2021) Performance and emission predictions of a CRDI engine powered with diesel fuel: A combined study of injection parameters variation and Box–Behnken response surface methodology based optimization, Fuel 290, 120069. [CrossRef] [Google Scholar]
  • How H.G., Masjuki H.H., Kalam M.A., Teoh Y.H. (2018) Influence of injection timing and split injection strategies on performance, emissions, and combustion characteristics of diesel engine fueled with biodiesel blended fuels, Fuel 213, 106e14. [Google Scholar]
  • Uslu S. (2020) Optimization of diesel engine operating parameters fueled with palm oil-diesel blend: Comparative evaluation between response surface methodology (RSM) and artificial neural network (ANN), fuel 276, 117990. [CrossRef] [Google Scholar]
  • Şimşek S., Uslu S. (2020) Investigation of the effects of biodiesel/2-ethylhexyl nitrate (EHN) fuel blends on diesel engine performance and emissions by response surface methodology (RSM), Fuel 275, 118005. [CrossRef] [Google Scholar]
  • Polat S. (2016) An experimental study on combustion, engine performance and exhaustemissions in a HCCI engine fuelled with diethyl ether–ethanol fuel blends, Fuel Process Technol. 143, 140–150. [CrossRef] [Google Scholar]
  • Paul A., Panua R.S., Debroy D., Bose P.K. (2014) Effect of compressed natural gas dual fuel operation with diesel and pongamia pinnata methyl ester (PPME) as pilot fuels on performance and emission characteristics of a CI (compression ignition) engine, Energy 68, 495–509. [CrossRef] [Google Scholar]
  • Pulkrabek W.W. (1997) Engineering Fundamentals of the Internal Combustion Engine, Pearson, New Jersey, USA, pp. 229–261. [Google Scholar]
  • Hoang A.T. (2021) Combustion behavior, performance and emission characteristics of diesel engine fuelled with biodiesel containing cerium oxide nanoparticles: A review, Fuel Process Technol. 218, 106840. [CrossRef] [Google Scholar]
  • Cheikh K., Sary A., Khaled L., Abdelkrim L., Mohand T. (2016) Experimental assessment of performance and emissions maps for biodiesel fueled compression ignition engine, Appl. Energy 161, 320–329. [CrossRef] [Google Scholar]
  • Yaşar A., Keskin A., Yıldızhan Ş., Uludamar E. (2019) Emission and vibration analysis of diesel engine fuelled diesel fuel containing metallic based nanoparticles, Fuel 239, 1224–1230. [CrossRef] [Google Scholar]
  • Yusaf T.F., Buttsworth D.R., Saleh K.H., Yousif B.F. (2010) CNG-diesel engine performance and exhaust emission analysis with the aid of artificial neural network, Appl. Energy 87, 5, 1661–1669. [CrossRef] [Google Scholar]
  • Hazar H., Tekdogan R., Sevinc H. (2021) Investigating the effects of oxygen enrichment with modified zeolites on the performance and emissions of a diesel engine through experimental and ANN approach, Fuel 303, 121318. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.