Issue |
Sci. Tech. Energ. Transition
Volume 79, 2024
Decarbonizing Energy Systems: Smart Grid and Renewable Technologies
|
|
---|---|---|
Article Number | 39 | |
Number of page(s) | 27 | |
DOI | https://doi.org/10.2516/stet/2024037 | |
Published online | 02 July 2024 |
- UNFCC. (2016) United Nations framework convention on climate change, in Report of the conference of the parties on its twenty-first session, held in Paris from 30 November to 13 December 2015 (PDF). https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/FCCC_CP_2015_10_Add. 1.pdf/ (accessed 10.06.2019). [Google Scholar]
- Nikkei. (2020) Suga’s 2050 zero-carbon goal thrusts Japan into green tech race. Azusa Kawakami for Nikkei Asia. https://asia.nikkei.com/Spotlight/Environment/Suga-s-2050-zero-carbon-goal-thrusts-Japan-into-green-tech-race (accessed 14.11.2020). [Google Scholar]
- Ministry of Economy, Trade and Industry (METI). (2021a) Green growth strategy through achieving carbon neutrality in 2050. https://www.meti.go.jp/english/press/2020/pdf/1225_001a.pdf (accessed: 29.04.2022). [Google Scholar]
- Ministry of Economy, Trade and Industry (METI). (2021b) Outline of strategic energy plan. https://www.enecho.meti.go.jp/en/category/others/basic_plan/pdf/6th_outline.pdf (accessed: 12.04.2022). [Google Scholar]
- JEPIC. (2020) The electric power industry in Japan 2020. Japan Electric Power Information Center, INC. https://www.jepic.or.jp/pub/pdf/epijJepic2020.pdf (accessed: 10.09.2020). [Google Scholar]
- Ministry of Economy, Trade and Industry (METI). (2018a) 5th strategic energy plan (provisional translation). https://www.enecho.meti.go.jp/en/category/others/basic_plan/5th/pdf/strategic_energy_plan.pdf (accessed 12.04.2022). [Google Scholar]
- Dong Y., Shimada K. (2017) Evolution from the renewable portfolio standards to feed-in tariff for the deployment of renewable energy in Japan, Renew. Energy 107, 590–596. [CrossRef] [Google Scholar]
- Knuepfer K., Rogalski N., Knuepfer A., Esteban M., Shibayama T. (2022) A reliable energy system for Japan with merit order dispatch, high variable renewable share and no nuclear power. Appl. Energy (accepted). [Google Scholar]
- REI. (2016) Recommendations for reform of the electricity system for establishing an electricity system with a significant share of renewable energy. Renewable Energy Institute. https://www.renewable-ei.org/en/images/pdf/20160524/DRAFT_electricity_system_reform_porposal.pdf (accessed: 17.12.2020). [Google Scholar]
- Wakiyama T., Kuriyama A. (2018) Assessement of renewable energy expansion potential and its implications on reforming Japan’s electricity system, Energy Policy 115 issue C, 302–316. [CrossRef] [Google Scholar]
- Yoshihara K., Ohashi H. (2017) Assessing the impact of renewable energy sources: simulation analysis of the Japanese electricity market. Research Institute of Economy, Trade and Industry. https://www.rieti.go.jp/en/publications/summary/17040014.html (accessed: 15.10.2020). [Google Scholar]
- Ministry of Economy, Trade and Industry (METI). (2018b) Trend of next generation/zero emission vehicle and policy in Japan. Presentation from April 2018. https://www.nedo.go.jp/content/100878195.pdf (accessed: 29.04.2022). [Google Scholar]
- Ministry of Economy, Trade and Industry (METI). (2018c) Japan promotes electrified vehicle (xEV) strategy ahead of 2050. Ministry of Economy, Trade and Industry. Last updated: 2018–11-20. URL: https://www.meti.go.jp/english/mobile/2018/20180911001en.html (accessed: 30.04.2022). [Google Scholar]
- Agency for Natural Resources and Energy (ANRE). (2014) Summary of the strategic road map for hydrogen and fuel cells. https://www.meti.go.jp/english/press/2014/pdf/0624_04a.pdf (accessed: 18.06.2020). [Google Scholar]
- Ministry of Economy, Trade and Industry (METI). (2018d) Japan H2 mobility, a company for development of hydrogen stations, established. https://www.meti.go.jp/english/press/2018/0305_001.html (accessed: 28.05.2020). [Google Scholar]
- Ministry of Economy, Trade and Industry (METI). (2017) Basic hydrogen strategy, ministerial council on renewable energy, hydrogen and related issues (PDF). https://www.meti.go.jp/english/press/2017/pdf/1226_003b.pdf/ (accessed:12.04.2019). [Google Scholar]
- Knüpfer K., Mäll M., Esteban M., Shibayama T. (2021) Review of mixed-technology vehicle fleet evolution and representation in modelling studies: policy contexts of Germany and Japan, Energy Policy 156, 112287. https://doi.org/10.1016/j.enpol.2021.112287 . [CrossRef] [Google Scholar]
- Mopidevi S., Narasipuram R.P., Aemalla S.R., Rajan H. (2022) E-mobility: impacts and analysis of future transportation electrification market in economic, renewable energy and infrastructure perspective, Int. J. Powertrains 11, 2/3, 264–284. [CrossRef] [Google Scholar]
- Narasipuram R.J., Mopidevi S.A. (2021) Technological overview & design considerations for developing electric vehicle charging stations, J. Energy Storage 43, 103225. [CrossRef] [Google Scholar]
- Solanke T.U., Ramachandaramurthy V.K., Yong J.Y., Pasupuleti J., Kasinathan P., Rajagopalan A. (2020) A review of strategic charging–discharging control of grid-connected electric vehicles, J. Energy Storage 28, 101193. https://doi.org/10.1016/j.est.2020.101193. [CrossRef] [Google Scholar]
- Hanley E.S., Deane J.P., Gallachóir B.P.Ó. (2018) The role of hydrogen in low carbon energy futures – a review of existing perspectives, Renew. Sustain. Energy Rev. 82, 3027–3045. https://doi.org/10.1016/j.rser.2017.10.034. [CrossRef] [Google Scholar]
- Nocera S., Cavallaro S. (2016) The competitiveness of alternative transport fuels for CO2 emissions, Transp. Policy 50, 1–14. [CrossRef] [Google Scholar]
- Parra D., Valverde L., Pino F.J., Patel M.K. (2019) A review of the role, cost and value of hydrogen energy systems for deep decarbonization, Renew. Sustain. Energy Rev. 101, 279–294. [CrossRef] [Google Scholar]
- Reichmuth D.S., Lutz A.E., Manley D.K., Keller J.O. (2013) Comparison of the technical potential for hydrogen, battery electric, and conventional light-duty vehicles to reduce greenhouse gas emissions and petroleum consumption in the United States, Int. J. Hydrog. Energy 38, 1200–1208. [CrossRef] [Google Scholar]
- Thiel C., Drossinos Y., Krause J., Harrison G., Gkatzoflias D., Donati A.V. (2016) Modelling electro-mobility: an integrated modelling platform for assessing European policies, Transp. Res. Procedia 14, 2544–2553. [CrossRef] [Google Scholar]
- Kim M., Kim J. (2017) An integrated decision support model for design and operation of a wind-based hydrogen supply system, Int. J. Hydrog. Energy 42, 3899–9915. [CrossRef] [Google Scholar]
- Robledo C.B., Oldenbroek V., Abbruzzese F., van Aijk A.J.M. (2018) Integrating a hydrogen fuel cell electric vehicle with vehicle-to-grid technology, photovoltaic power and a residential building, Appl. Energy 215, 615–629. [CrossRef] [Google Scholar]
- Cao S. (2016) Comparison of the energy and environmental impact by integrating a H2 vehicle and an electric vehicle into a zero-energy building, Energy Convers. Manag. 123, 153–173. [CrossRef] [Google Scholar]
- Das S., Panda S. (2023) An optimized fractional order cascade controller for frequency regulation of power system with renewable energies and electric vehicles, Energy Syst. 14, 171–195. https://doi.org/10.1007/s12667-021-00461-9 . [CrossRef] [Google Scholar]
- Komiyama R., Fujii Y. (2015) Assessment of energy saving and CO2 mitigation potential of electric vehicles and plug-in hybrid vehicles under Japan’s power generation mix, Electr. Eng. Jpn. 192, 10–18. [CrossRef] [Google Scholar]
- Lee D.-H. (2014) Development and environmental impact of hydrogen supply chain in Japan: assessment by the CGE-LCA method in Japan with a discussion of the importance of biohydrogen, Int. J. Hydrog. Energy 39, 19294–19310. [CrossRef] [Google Scholar]
- Shafiei E., Davidsdottir B., Leaver J., Stefansson H., Asgeirsson E.I. (2015) Comparative analysis of hydrogen, biofuels and electricity transitional pathways to sustainable transport in renewable-based electricity system, Energy 83, 614–627. [CrossRef] [Google Scholar]
- Shin J., Hwang W.S., Choi H. (2019) Can hydrogen fuel vehicles be a sustainable alternative on vehicle market? Comparison of electric and hydrogen fuel cell vehicles, Technol. Forecast Soc. Chang. 143, 239–248. [CrossRef] [Google Scholar]
- Tarroja B., Shaffer B., Samuelsen S. (2015) The importance of grid integration of achievable greenhouse gas emissions reductions from alternative vehicle technologies, Energy 87, 504–519. [CrossRef] [Google Scholar]
- Carr S., Premier G.C., Guwy A.J., Dinsdale R.M., Maddy J. (2014) Hydrogen storage and demand to increase wind power onto electricity distribution networks, Int. J. Hydrog. Energy 39, 10195–10207. [CrossRef] [Google Scholar]
- Hoarau Q., Perez Y. (2018) Interactions between electric mobility and photovoltaic generation: a review, Renew. Sustain. Energy Rev. 94, 510–522. [CrossRef] [Google Scholar]
- Islam M.S., Mithulananthan N., Hung D.Q. (2019) Coordinated EV charging for correlated EV and grid loads and PV output using a novel, correlated, probabilistic model, Int. J. Elec. Power Energy Syst. 104, 335–348. [CrossRef] [Google Scholar]
- Mwasilu F., Justo J.J., Kim E.-K., Do T.D., Jung J.W. (2014) Electric vehicles and smart grid interaction: a review on vehicle to grid and renewable energy sources integration, Renew. Sustain. Energy Rev. 34, 501–516. https://doi.org/10.1016/j.rser.2014.03.031 . [CrossRef] [Google Scholar]
- Richardson D.B. (2013) Electric vehicles and the electric grid: a review of modeling approaches, impacts, and renewable energy integration, Renew. Sustain. Energy Rev. 19, 247–254. [CrossRef] [Google Scholar]
- Kobashi T., Yarime M. (2019) Techno-economic assessment of the residential photovoltaic systems integrated with electric vehicles: a case study of Japanese households towards 2030, Energy Procedia 158, 3802–3807. [CrossRef] [Google Scholar]
- Mills G., MacGill I. (2018) Assessing electric vehicle storage, flexibility and distributed energy resource potential, J. Energy Storage 17, 357–366. [CrossRef] [Google Scholar]
- Seddig K., Jochem P., Fichtner W. (2017) Integrating renewable energy sources by electric vehicle fleets under uncertainty, Energy 141, 2145–2153. [CrossRef] [Google Scholar]
- Dodds P.E., McDowall W. (2014) Methodologies for representing the road transport sector in energy system models, Int. J. Hydrog. Energy 39, 5, 2345–2358. [CrossRef] [Google Scholar]
- Park S., Yoo J., Han S.J., Song J.H., Lee E.J., Song I.K. (2017) Steam reforming of liquefied natural gas (LNG) for hydrogen production over nickel–boron–alumina xerogel catalyst, Int. J. Hydrog. Energy 42, 22, 15096–15106. [CrossRef] [Google Scholar]
- Komiyama R., Fujii Y. (2017) Modeling analysis of electric vehicle penetration scenario using dynamic optimal power generation mix model with high temporal resolution, Electr. Eng. Jpn. 199, 61–70. [CrossRef] [Google Scholar]
- Madzharov D., Delarue E., D’haeseleer W. (2014) Integrating electric vehicles as flexible load in unit commitment modeling, Energy 65, 285–294. [CrossRef] [Google Scholar]
- Taljegard M., Göransson L., Odenberger M., Johnsson F. (2019) Impacts of electric vehicles on the electricity generation portfolio – a Scandinavian-German case study, Appl. Energy 235, 1637–1650. [CrossRef] [Google Scholar]
- Verzijlbergh R., Martínez-Anido C.B., Lukszo Z., de Vries L. (2014) Does controlled electric vehicle charging substitute cross-border transmission capacity?, Appl. Energy 120, 169–180. [CrossRef] [Google Scholar]
- Iacobucci R., McLellan B., Tezuka T. (2018a) Modeling shared autonomous electric vehicles: potential for transport and power grid integration, Energy 158, 148–163. [CrossRef] [Google Scholar]
- Iacobucci R., McLellan B., Tezuka T. (2018b) The synergies of shared autonomous electric vehicles with renewable energy in a virtual power plant and microgrid, Energies 11, 2016. [CrossRef] [Google Scholar]
- Kroog Ekman C. (2011) On the synergy between large electric vehicle fleet and high wind penetration – an analysis of the Danish case, Renew. Energy 36, 2, 546–553. [CrossRef] [Google Scholar]
- Lund H., Kempton W. (2008) Integration of renewable energy into the transport and electricity sectors through V2G, Energy Policy 36, 9, 3578–3587. [CrossRef] [Google Scholar]
- Cutter E., Conlon B., Garnett O., Zhang J., Ryan N. (2019) California framework for grid value of vehicle grid integration (VGI): presentation to VGI working group on 12th April 2019. https://gridworks.org/wp-content/uploads/2019/05/VGI_4.12-Slides.pdf (accessed: 20.05.2021). [Google Scholar]
- Ramesh R. (2021) Assembly bill 2127 electric vehicle charging infrastructure assessment: staff report. Docket number: 19-AB-2127. [Google Scholar]
- Felgenhauer M.F., Pellow M.A., Benson S.M., Hamacher T. (2016a) Economic and environmental prospects of battery and fuel cell vehicles for the energy transition in German communities, Energy Procedia 99, 380–391. [CrossRef] [Google Scholar]
- Felgenhauer M.F., Pellow M.A., Benson S.M., Hamacher T. (2016b) Evaluating co-benefits of battery and fuel cell vehicles in a community in California, Energy 114, 360–368. [CrossRef] [Google Scholar]
- Zhang Q., McLellan B.C., Tezuka T., Ishihara K.N. (2013) An integrated model for long-term power generation planning toward future smart electricity systems, Appl. Energy 112, 1424–1437. [CrossRef] [Google Scholar]
- McPherson M., Karney B. (2017) A scenario based approach to designing electricity grids with high variable renewable energy penetrations in Ontario, Canada: development and application of the SILVER model, Energy 138, 185–196. [CrossRef] [Google Scholar]
- Moliner R., Lazaro M.J., Suelves I. (2016) Analysis of the strategies for bridging the gap towards the hydrogen economy, Int. J. Hydrog. Energy 41, 19500–19508. [CrossRef] [Google Scholar]
- Ministry of Economy, Trade and Industry (METI). (2021c) 2030年における再生可能エネルギーについて(transl.: About renewable energy in 2030). https://www.meti.go.jp/shingikai/enecho/denryoku_gas/saisei_kano/pdf/031_02_00.pdf (accessed: 29.06.2022). [Google Scholar]
- OCCTO. (2019) Aggregation of electricity supply plans, fiscal year 2019. Figure 3–6: composition of installed power generation capacity for each regional service area. p. 24. http://www.occto.or.jp/en/information_disclosure/supply_plan/files/supplyplan_2019.pdf (accessed: 15.10.2020). [Google Scholar]
- FiT. (2022) 固定価格買取制度 情報公表用ウェブサイト (“Feed-in tariff website for information disclosure”). https://www.fit-portal.go.jp/PublicInfoSummary (accessed: 12.04.2022). [Google Scholar]
- Chen Y.T., Knuepfer K., Esteban M., Shibayama T. (currently under review) Renewable Energy. [Google Scholar]
- DOE Global Energy Storage Database. (2020) Global energy database projects 21–09-2020: battery_cap-01-2020.01.04. https://www.sandia.gov/ess-ssl/global-energy-storage-database-home/ (accessed: 18.10.2020). [Google Scholar]
- JMA. (2020) 過去の気象データ・ダウンロード(Past meteorological data download landing page). Japan Meteorological Agency. https://www.data.jma.go.jp/gmd/risk/obsdl/index.php (accessed: 19.12.2020). [Google Scholar]
- Agency for Natural Resources and Energy (ANRE). (2020) 電力調査統計表 過去のデータ: Table 2-(2) of each relevant year. https://www.enecho.meti.go.jp/statistics/electric_power/ep002/results_archive.html (accessed: 20.10.2020). [Google Scholar]
- TEPCO. (2020) Hourly demand progression. http://www.tepco.co.jp/en/forecast/html/download-e.html (accessed: 03.08.2020). [Google Scholar]
- NeV. (2018) 都道府県別補助金交付状況 充電設備 (“Subsidy grant status by prefecture for charging equipment”). http://www.cev-pc.or.jp/tokei/koufu3.html (accessed: 20.05.2021). [Google Scholar]
- Sun X. (2016) Charging behavior of battery electric vehicle users in Japan. Doctoral Dissertation: Nagoya University. http://hdl.handle.net/2237/24286. https://nagoya.repo.nii.ac.jp/?action=pages_view_main&active_action=repository_view_main_item_detail&item_id=22078&item_no=1&page_id=28&block_id=27 (accessed: 5.7.2020). [Google Scholar]
- IPSS. (2020) Table 1. Total population by municipality in Japan: 2015–2045. National Institute of Population and Social Security Research. http://www.ipss.go.jp/pp-shicyoson18/t-page.asp (accessed 19.10.2020). [Google Scholar]
- Stat. (2013). Table 21–3: Dwellings by type of dwelling, type of building, stories of building and prefecture (1988–2013). Housing and Land Survey. [Google Scholar]
- CEV. (2021) FCEV number of HRS and location. http://www.cev-pc.or.jp/suiso_station/index.html (accessed: 18.07.2020). [Google Scholar]
- JHyM. (2020) Japan H2 mobility. About JHyM. https://www.jhym.co.jp/en/nav-about/ (accessed 14.11.2020). [Google Scholar]
- Statista. (2019) Number of gasoline filling stations in Japan from 2002 to 2018. https://www.statista.com/statistics/870206/japan-number-gas-stations/ (accessed 14.11.2020). [Google Scholar]
- KBA. (2021) Jahresbilanz – Bestand. https://www.kba.de/DE/Statistik/Fahrzeuge/Jahresbilanz/bestand_jahresbilanz_node.html (accessed: 04.05.2021). [Google Scholar]
- Pareschi G., Küng L., Georges G., Boulouchos K. (2020) Are travel surveys a good basis for EV models? Validation of simulated charging profiles against empirical data, Appl. Energy 275, 115318. [CrossRef] [Google Scholar]
- Rapier R. (2020) Estimating the carbon footprint of utility-scale battery storage. Forbes. https://www.forbes.com/sites/rrapier/2020/02/16/estimating-the-carbon-footprint-of-utility-scale-battery-storage/?sh=2ef247407adb (accessed: 06.06.2021). [Google Scholar]
- House of Parliament. (2011) parliament.uk/globalassets/documents/post/postpn_383-carbon-footprint-electricity-generation.pdf (accessed: 20.04.2022). [Google Scholar]
- Portugal-Pereira J., Esteban M. (2014) Implications of paradigm shift in Japan’s electricity security of supply: a multi-dimensional indicator assessment, Appl. Energy 123, issue C, 424–434. [CrossRef] [Google Scholar]
- Ministry of Economy, Trade and Industry (METI). (2021d) Japan’s energy 2020. https://www.enecho.meti.go.jp/en/category/brochures/pdf/japan_energy_2020.pdf (accessed: 29.06.2022). [Google Scholar]
- Ministry of Economy, Trade and Industry (METI). (2021e) 2030年度におけるエネルギー需給の見通し (関連資料) (transl.: Outlook for energy supply and demand in 2030 (related materials)). https://www.enecho.meti.go.jp/committee/council/basic_policy_subcommittee/opinion/data/03.pdf (accessed: 29.06.2022). [Google Scholar]
- JAIF. (2019) Current status of nuclear power plants in Japan. https://www.jaif.or.jp/cms_admin/wp-content/uploads/2019/09/jp-npps-operation20190905_en.pdf (accessed: 29.06.2022). [Google Scholar]
- NEV. (2020) 水素ステーション設備状況 (“Hydrogen station facilities”). http://www.cev-pc.or.jp/suiso_station/index.html (accessed: 13.04.2022). [Google Scholar]
- IEA. (2015) Large-scale hydrogen delivery infrastructure: final report, Expert Group Task 28. International Energy Agency, Hydrogen Implementing Agreement. ISBN 978-0-9815041-8-6. URL: https://www.ieahydrogen.org/tasks-reports/ (accessed: 04.05.2021). [Google Scholar]
- IRENA. (2020) Green Hydrogen Cost Reduction: scaling up electrolysers to meet the 1.5C Climate Goal, International Renewable Agency, Abu Dhabi. https://irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Green_hydrogen_cost_2020.pdf (accessed: 25.04.2021). [Google Scholar]
- J-POWER. (2022). Geothermal power generation business. https://www.jpower.co.jp/bs/renewable_energy/geothermal/ (accessed: 12.04.2022). [Google Scholar]
- J-POWER. (2019a) Construction works started at Appi Geothermal Power Plant. https://www.jpower.co.jp/english/news_release/pdf/news190910.pdf (accessed: 12.04.2022). [Google Scholar]
- J-POWER. (2019b) Onikoube power plant. https://www.jpower.co.jp/english/news_release/pdf/news190910.pdf (accessed: 12.04.2022). [Google Scholar]
- EPA. (2018a) 2018 Nissan Leaf compare side-by-side. US Department of Energy, U.S. Environmental Protection Agency. https://www.fueleconomy.gov/feg/Find.do?action=sbs&id=39860 (accessed: 04.05.2021). [Google Scholar]
- EPA. (2018b) 2018 Tesla Model 3 Long Range compare side-by-side. US Department of Energy, U.S. Environmental Protection Agency. https://www.fueleconomy.gov/feg/Find.do?action=sbs&id=39836 (accessed: 04.05.2021). [Google Scholar]
- Kane M. (2014) Toyota Mirai fuel cell Sedan priced at $57,500 – specs, videos. Article for InsideEVs. https://insideevs.com/news/323973/toyota-mirai-fuel-cell-sedan-priced-at-57500-specs-videos/ (accessed: 29.06.2022). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.