Open Access
Issue |
Sci. Tech. Energ. Transition
Volume 79, 2024
|
|
---|---|---|
Article Number | 40 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.2516/stet/2024030 | |
Published online | 12 July 2024 |
- Sehloff D., Roald L. (2020) Steady state modeling for variable frequency ac power flow, in North American Power Symposium (NAPS), IEEE. ArXiv preprint available at https://arxiv.org/abs/2101.11113. [Google Scholar]
- Soriano Rangel A., Mancilla-David F. (2018) Hexverter–based optimal low frequency AC transmission system, in North American Power Symposium, IEEE. [Google Scholar]
- Nguyen Q., Ngo T., Santoso S. (2016) Power flow solution for multifrequency ac power systems, in 2016 IEEE/PES Transmission and Distribution Conference and Exposition (TD), IEEE. [Google Scholar]
- Sehloff D., Roald L.A. (2022) Low frequency AC transmission upgrades with optimal frequency selection, IEEE Trans. Power Syst. 37, 2, 1437–1448. https://doi.org/10.1109/TPWRS.2021.3107193. [CrossRef] [Google Scholar]
- Warid W., Hizam H., Mariun N., Abdul-Wahab N. (2016) Optimal power flow using the Jaya algorithm, Energies 9, 9, 678. [CrossRef] [Google Scholar]
- Pandey H.M. (2016) Jaya a novel optimization algorithm: What, how and why?, in 2016 6th International Conference – Cloud System and Big Data Engineering (Confluence), pp. 728–730. [CrossRef] [Google Scholar]
- Angeles C., Mercader E.J., Tan G.E., Pacis M.C., Bersano R.F. (2017) Fault evaluation and performance of an IEEE bus 30 power distribution network with distributed generation (DG), in 2017 HNICEM Proceedings, IEEE. [Google Scholar]
- Acha E., Fuerte-Esquivel C.R., Ambriz-Perez H., Angeles-Camacho C. (2004) FACTS: modelling and simulation in power networks, John Wiley & Sons. [CrossRef] [Google Scholar]
- Chen W.Y. (2004) Home networking basics, Prentice Hall, p. 26. ISBN 0-13-016511-5. [Google Scholar]
- Daelemans G. (2008) VSC HVDC in meshed networks, Master’s thesis, Katholieke Universiteit Leuven, Leuven, Belgium. [Google Scholar]
- Cordero R. (1996) Estimation of Transmission Losses in a Changing Electric Power Industry, Massachusetts Institute of Technology. [Google Scholar]
- Nguyen Q., Todeschini S., Santoso S. (2019) Power flow in a multifrequency hvac and hvdc system: Formulation, solution, and validation, IEEE Trans. Power Syst. 36, 4, 2487–2497. [CrossRef] [Google Scholar]
- Nguyen Q., Santoso S. (2021) Optimal planning and operation of multi-frequency HVac transmission systems, IEEE Trans. Power Syst. 36, 1, 689–398. https://doi.org/10.1109/TPWRS.2020.3037967. [CrossRef] [MathSciNet] [Google Scholar]
- Sayed A.R., Wang C., Anis H., Bi T. (2022) Feasibility constrained online calculation for real-time optimal power flow: a convex constrained deep reinforcement learning approach, IEEE Trans. Power Syst. https://doi.org/10.1109/TPWRS.2022.3220799. [Google Scholar]
- Ahrabi R.R., Li Y.M., Nejabatkhah F. (2021) Hybrid AC/DC network with parallel LCC-VSC interlinking converters, IEEE Trans. Power Syst. 36, 1, 722–731. https://doi.org/10.1109/TPWRS.2020.3020235. [CrossRef] [Google Scholar]
- Van Cutsem T., Glavic M., Rosehart W., Andrade dos Santos J., Cañizares C., Kanatas M., Lima L., Milano F., Papangelis L., Andrade Ramos R., Tamimi B. (2015) Test systems for voltage stability analysis and security assessment, Technical Report, IEEE. [Google Scholar]
- Li C., Burgos R., Wen B., Tang Y., Boroyevich D. (2020) Stability analysis of power systems with multiple STATCOMs in close proximity, IEEE Trans. Power Electron. 35, 3, 2268–2283. https://doi.org/10.1109/TPEL.2019.2931891. [CrossRef] [Google Scholar]
- Hraiz M.D., García J.A.M., Jiménez Castañeda R., Muhsen H. (2020) Optimal PV size and location to reduce active power losses while achieving very high penetration level with improvement in voltage profile using modified jaya algorithm, IEEE J. Photovolt. 10, 4, 1166–1174. https://doi.org/10.1109/JPHOTOV.2020.2995580. [CrossRef] [Google Scholar]
- Arshad M.H., Abido M.A., Salem A., Elsayed A.H. (2019) Weighting factors optimization of model predictive torque control of induction motor using NSGA-II with TOPSIS decision making, IEEE Access 7, 177595–177606. https://doi.org/10.1109/ACCESS.2019.2958415. [CrossRef] [Google Scholar]
- Kazemtabrizi B., Acha E. (2014) An advanced STATCOM model for optimal power flows using Newton’s method, IEEE Trans. Power Syst. 29, 2, 514–525. [CrossRef] [Google Scholar]
- Santos A. Jr., Costa G.R.M.d. (1995) Optimal power flow solutions by Newton’s method applied to an augmented Lagrangian function, IEE Proc. Gen. Transm. Distrib. 142, 33–36. [CrossRef] [Google Scholar]
- Wafaa M.B., Dessaint L.-A. (2017) Multi-objective stochastic optimal power flow considering voltage stability and demand response with significant wind penetration, IET Gener. Transmiss. Distrib. 11, 14, 3499–3509. [CrossRef] [Google Scholar]
- Platbrood L., Capitanescu F., Merckx C., Crisciu H., Wehenkel L. (2014) Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems, Int. J. Ind. Eng. Comput. 29, 3, 19–34. [Google Scholar]
- Venkata Rao R. (2016) Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems, Int. J. Ind. Eng. Comput. 19–34. [Google Scholar]
- Nguyen N., Almasabi S., Bera A., Mitra J. (2018) Optimal power flow considering frequency security constraint, in Proc. IEEE PES/IAS Power Africa Conf., IEEE, pp. 1–6. [Google Scholar]
- Sun D.I., Ashley B., Brewer B., Hughes A., Tinney W.F. (1984) Optimal power flow by Newton approach, IEEE Trans. Power App. Syst. PAS-103, 10, 2864–2880. [CrossRef] [Google Scholar]
- Anand M., Goswami S.K., Chatterjee D. (2022) Multi-frequency control with fuzzy 2DOFPI in HVBTB converter of LF-HVAC system, Int. J. Emerg. Electr. Power Syst. 24, 6, 717–728. https://doi.org/10.1515/ijeeps-2022-0133. [Google Scholar]
- Acha E., Fuerte-Esquivel C.R., Ambriz-Perez H., Angeles-Camacho C. (2005) FACTS modeling and simulation in power networks, Wiley, New York, NY, USA. [Google Scholar]
- Tien D.V., Gono R., Leonowicz Z., Krejci P. (2019) Load flow analysis in power system network incorporating STATCOM: A comparison of the direct and indirect algorithm of the Newton-Raphson method, Adv. Electr. Electron. Eng. 17, 1, 13–23. [Google Scholar]
- Tang W., Wu B., Zhang L., Zhang X., Li J., Wang L. (2021) Multi-objective optimal dispatch for integrated energy systems based on a device value tag, CSEE J. Power Energy Syst. 7, 3, 632–643. https://doi.org/10.17775/CSEEJPES.2019.02650. [Google Scholar]
- Jha R.R., Inaolaji A., Biswas B.D., Suresh A., Dubey A., Paudyal S., Kamalasadan S., (2022) Distribution grid optimal power flow (d-opf): Modeling, analysis, and benchmarking, IEEE Trans. Power Syst. 38, 4, 3654–3668. [Google Scholar]
- Ngo T., Lwin M., Santoso S. (2016) Steady-state analysis and performance of low frequency ac transmission lines, IEEE Trans. Power Syst. 31, 5, 3873–3880. [CrossRef] [Google Scholar]
- Acha E., Kazemtabrizi B. (2013) A new STATCOM model for power flows using the Newton-Raphson method, IEEE Trans. Power Syst. 28, 3, 2455–2465. [CrossRef] [Google Scholar]
- Mohanty R., Chatterjee D., Suman S., Anand M. (2023) A reduced switch count multilevel inverter for PV standalone system using modified JAYA algorithm, Int. J. Electron. 111, 2, 360–378. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.