Open Access
Sci. Tech. Energ. Transition
Volume 79, 2024
Article Number 16
Number of page(s) 18
Published online 18 March 2024
  • Reitz R.D., Ogawa H., Payri R., Fansler T., Kokjohn S., Moriyoshi Y., Agarwal A.K., Arcoumanis D., Assanis D., Bae C., Boulouchos K., Canakci M., Curran S., Denbratt I., Gavaises M., Guenthner M., Hasse C., Huang Z., Ishiyama T., Johansson B., Johnson T.V., Kalghatgi G., Koike M., Kong S.C., Leipertz A., Miles P., Novella R., Onorati A., Richter M., Shuai S., Siebers D., Su W., Trujillo M., Uchida N., Vaglieco B.M., Wagner R.M., Zhao H. (2020) IJER editorial: The future of the internal combustion engine, Int. J. Engine Res. 21, 3–10. [CrossRef] [Google Scholar]
  • Santos N.D., Roso V.R., Malaquias A.C., Baeta J.G. (2021) Internal combustion engines and biofuels: Examining why this robust combination should not be ignored for future sustainable transportation, Renew. Sust. Energy Rev. 148, 111292. [CrossRef] [Google Scholar]
  • Driga A.M., Drigas A.S. (2019) Climate change 101: how everyday activities contribute to the ever-growing issue, Int. J. Recent Contributions Eng. Sci. IT 7, 22–31. [CrossRef] [Google Scholar]
  • Kalghatgi G.T. (2014) The outlook for fuels for internal combustion engines, Int. J. Engine Res. 15, 383–98. [CrossRef] [Google Scholar]
  • Martins J., Brito F.P. (2020) Alternative fuels for internal combustion engines, Energies 13, 4086. [CrossRef] [Google Scholar]
  • Kalghatgi G. (2018) Is it really the end of internal combustion engines and petroleum in transport? Appl. Energy 225, 965–974. [CrossRef] [Google Scholar]
  • Singh R.K., Sarkar A., Chakraborty J.P. (2019) Influence of alternate fuels on the performance and emission from internal combustion engines and soot particle collection using thermophoretic sampler: a comprehensive review, Waste Biomass. Valori. 10, 2801–2823. [CrossRef] [Google Scholar]
  • Dreizler A., Pitsch H., Scherer V., Schulz C., Janicka J. (2021) The role of combustion science and technology in low and zero impact energy transformation processes, Appl. Energy Combust. Sci. 7, 100040. [Google Scholar]
  • Geng P., Cao E., Tan Q., Wei L. (2017) Effects of alternative fuels on the combustion characteristics and emission products from diesel engines: a review, Renew. Sust. Energy Rev. 71, 523–534. [CrossRef] [Google Scholar]
  • Manieniyan V., Thambidurai M., Selvakumar R. (2009) Study on energy crisis and the future of fossil fuels, Proc. SHEE 10, 2234–3689. [Google Scholar]
  • Paykani A., Chehrmonavari H., Tsolakis A., Alger T., Northrop W.F., Reitz R.D. (2022) Synthesis gas as a fuel for internal combustion engines in transportation, Prog. Energy Combust. Sci. 90, 100995. [CrossRef] [Google Scholar]
  • Cardoso J.S., Silva V., Rocha R.C., Hall M.J., Costa M., Eusébio D. (2021) Ammonia as an energy vector: Current and future prospects for low-carbon fuel applications in internal combustion engines, J. Clean. Prod. 296, 126562. [CrossRef] [Google Scholar]
  • Gashaw A., Teshita A. (2014) Production of biodiesel from waste cooking oil and factors affecting its formation: A review, Int. J. Renew. Sustain. Energy 3, 92–98. [Google Scholar]
  • Alajmi F.S., Hairuddin A.A., Adam N.M., Abdullah L.C. (2018) Recent trends in biodiesel production from commonly used animal fats, Int. J. Energy Res. 42, 885–902. [CrossRef] [Google Scholar]
  • Huang D., Zhou H., Lin L. (2012) Biodiesel: an alternative to conventional fuel, Energy Procedia 16, 1874–1885. [CrossRef] [Google Scholar]
  • Dey S., Reang N.M., Das P.K., Deb M. (2021) A comprehensive study on prospects of economy, environment, and efficiency of palm oil biodiesel as a renewable fuel, J. Clean. Prod. 286, 124981. [CrossRef] [Google Scholar]
  • Ingle A.P., Chandel A.K., Philippini R., Martiniano S.E., da Silva S.S. (2020) Advances in nanocatalysts mediated biodiesel production: a critical appraisal, Symmetry 12, 256. [CrossRef] [Google Scholar]
  • Uyan M., Alptekin F.M., Cebi D., Celiktas M.S. (2020) Bioconversion of hazelnut shell using near critical water pretreatment for second generation biofuel production, Fuel 273, 117641. [CrossRef] [Google Scholar]
  • Mizik T., Gyarmati G. (2021) Economic and sustainability of biodiesel production a systematic literature review, Clean Technol. 3, 19–36. [CrossRef] [Google Scholar]
  • Esmaeili H. (2022) A critical review on the economic aspects and life cycle assessment of biodiesel production using heterogeneous nanocatalysts, Fuel Process. Technol. 230, 107224. [CrossRef] [Google Scholar]
  • Jeswani H.K., Chilvers A., Azapagic A. (2020) Environmental sustainability of biofuels: a review, Proc. R. Soc. 476, 20200351. [CrossRef] [PubMed] [Google Scholar]
  • Melo-Espinosa E.A., Piloto-Rodríguez R., Goyos-Pérez L., Sierens R., Verhelst S. (2015) Emulsification of animal fats and vegetable oils for their use as a diesel engine fuel: An overview, Renew. Sust. Energy Rev. 47, 623–633. [CrossRef] [Google Scholar]
  • Markov V., Kamaltdinov V., Devyanin S., Sa B., Zherdev A., Furman V. (2021) Investigation of the influence of different vegetable oils as a component of blended biofuel on performance and emission characteristics of a diesel engine for agricultural machinery and commercial vehicles, Resources 10, 74. [CrossRef] [Google Scholar]
  • Yaman H. (2022) Investigation of the effect of compression ratio on the energetic and exergetic performance of a CI engine operating with safflower oil methyl ester, Proc. Saf. Environ. Prot. 158, 607–624. [CrossRef] [Google Scholar]
  • Praveena V., Bai F.J.J.S., Balasubramanian D., Devarajan Y., Aloui F., Varuvel E.G. (2023) Experimental assessment on the performance, emission, and combustion characteristics of a safflower oil fueled CI engine with hydrogen gas enrichment, Fuel 334, 126682. [CrossRef] [Google Scholar]
  • Maheshwari P., Haider M.B., Yusuf M., Klemeš J.J., Bokhari A., Beg M., Al-Othman A., Kumar R., Jaiswal A.K. (2022) A review on latest trends in cleaner biodiesel production: role of feedstock, production methods, and catalysts, J. Clean. Prod. 355, 131588. [CrossRef] [Google Scholar]
  • Moazeni F., Chen Y.C., Zhang G. (2019) Enzymatic transesterification for biodiesel production from used cooking oil, a review, J. Clean. Prod. 216, 117–128. [CrossRef] [Google Scholar]
  • Aransiola E.F., Ojumu T.V., Oyekola O.O., Madzimbamuto T.F., Ikhu-Omoregbe D.I.O. (2014) A review of current technology for biodiesel production: State of the art, Biomass Bioenergy 61, 276–297. [CrossRef] [Google Scholar]
  • Yesilyurt M.K., Cesur C., Aslan V., Yilbasi Z. (2020) The production of biodiesel from safflower (Carthamus tinctorius L.) oil as a potential feedstock and its usage in compression ignition engine: A comprehensive review, Renew. Sust. Energy Rev. 119, 109574. [CrossRef] [Google Scholar]
  • Shaah M.A.H., Hossain M.S., Allafi F.A.S., Alsaedi A., Ismail N., Ab Kadir M.O., Ahmad M.I. (2021) A review on non-edible oil as a potential feedstock for biodiesel: physicochemical properties and production technologies, RSC Adv. 11, 25018. [CrossRef] [Google Scholar]
  • de Oliveira C.V.K., Santos R.F., Siqueira J.A.C., Bariccatti R.A., Lenz N.B.G., Cruz G.S., Tokura L.K., Klajn F.F. (2018) Chemical characterization of oil and biodiesel from four safflower genotypes, Ind. Crops Prod. 123, 192–196. [CrossRef] [Google Scholar]
  • Nogales-Delgado S., Encinar J.M., Cortés Á.G. (2021) High oleic safflower oil as a feedstock for stable biodiesel and biolubricant production, Ind. Crops Prod. 170, 113701. [CrossRef] [Google Scholar]
  • Gongora B., de Souza S.N.M., Bassegio D., Santos R.F., Siqueira J.A.C., Bariccatti R.A., Gurgacz F., Secco D., Tokura L.K., Sequinel R. (2022) Comparison of emissions and engine performance of safflower and commercial biodiesels, Ind Crops Prod 179, 114680. [CrossRef] [Google Scholar]
  • Singh D.K., Tirkey J.V. (2022) Optimization of performance and emission characteristics of CI engine fueled with waste safflower oil biodiesel and its blends, Pet. Sci. Technol. 1–28. [CrossRef] [Google Scholar]
  • Venkatesan B., Seeniappan K., Shanmugam E., Subramanian S., Veerasundaram J. (2021) Characterization and effect of the use of safflower methyl ester and diesel blends in the compression ignition engine, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 76, 29–35. [CrossRef] [Google Scholar]
  • Ilkılıç C., Aydın S., Behcet R., Aydin H. (2011) Biodiesel from safflower oil and its application in a diesel engine, Fuel Process. Technol. 92, 356–362. [CrossRef] [Google Scholar]
  • Celebi Y., Aydin H. (2018) Investigation of the effects of butanol addition on safflower biodiesel usage as fuel in a generator diesel engine, Fuel 222, 385–393. [CrossRef] [Google Scholar]
  • Aydogan H. (2015) Performance, emission and combustion characteristics of bioethanol biodiesel- diesel fuel blends used in a common rail diesel engine, J. Therm. Sci. Technol. 35, 19–27. [Google Scholar]
  • Aydın F., Ogüt H. (2017) Effects of using ethanol-biodiesel-diesel fuel in single cylinder diesel engine to engine performance and emissions, Renew. Energy 103, 688–694. [CrossRef] [Google Scholar]
  • Aydin H. (2016) Scrutinizing the combustion, performance, and emissions of safflower biodiesel–kerosene fueled diesel engine used as power source for a generator, Energy Convers. Manag. 117, 400–409. [CrossRef] [Google Scholar]
  • Özçelik A.E. (2017) Investigation of the effects of safflower biodiesel blends with eurodiesel fuel on engine performance and emissions in common-rail diesel engine, J. Ege Univ. Fac. Agri. 54, 9–16. [Google Scholar]
  • Ors I., Bakircioglu V. (2016) An experimental and ANNs study of the effects of safflower oil biodiesel on engine performance and exhaust emissions in a CI engine, Int. J. Adv. Eng. Technol. 5, 125–135. [Google Scholar]
  • Kämmer A., Liebl J., Krug C., Munk F., Reuss H.C. (2003) Real-time engine models, SAE Trans. 112, 1381–1389. [Google Scholar]
  • Reitz R.D. (2013) Directions in internal combustion engine research, Combust. Flame 160, 1–8. [Google Scholar]
  • Jiang F., Wang M., Li L. (2012) Software design of engine characteristic simulation, J. Softw. 7, 316–321. [Google Scholar]
  • Sujesh G., Ramesh S. (2018) Modeling and control of diesel engines: a systematic review, Alex. Eng. J. 57, 4033–4048. [CrossRef] [Google Scholar]
  • Chan K., Ordys A., Volkov K., Duran O. (2013) Comparison of engine simulation software for development of control system, Model. Simul. Eng. 2013, 5–25. [Google Scholar]
  • Van Nguyen K. (2022) Research for simulation engine Hyundai CRDI D4FA with on the AVL-boost software, UTEHY J. Sci. Technol. 35, 60–65. [Google Scholar]
  • Bellér G., Arpad I., Kiss J.T., Kocsis D. (2021) AVL Boost: a powerful tool for research and education, J. Phys. Conf. Ser. 1935, 012015. [CrossRef] [Google Scholar]
  • Abbas M.S. (2022) Comprehensive analysis of engine power, combustion parameters, and emissions of a B30 biodiesel-powered IC engine, CFD Lett. 14, 87–99. [CrossRef] [Google Scholar]
  • AVL BOOST v2013.2 theory, Hans-List-Platz 1, A-8020, Graz, Austria, 2013. [Google Scholar]
  • Gholami Ghanati S., Doğan B., Yeşilyurt M.K., Yaman H. (2023) Determination of engine performance and harmful pollutants of a spark-ignition engine fueled with higher-order alcohol/gasoline blends by engine simulation, Proc. Inst. Mech. Eng. E 1–12. [Google Scholar]
  • Milojevic S., Pesic R. (2018) Determination of combustion process model parameters in diesel engine with variable compression ratio, J. Combust. 2018, 1–11. [CrossRef] [Google Scholar]
  • Onorati A., Montenegro G., D’Errico G. (2006) Prediction of the attenuation characteristics of IC engine silencers by 1-D and multi-D simulation models, SAE Technical Paper 2006-01-1541, Society of Automotive Engineers, Available at [Google Scholar]
  • Vera J., Ghandhi J. (2011) Investigation of post-flame oxidation of unburned hydrocarbons in small engines, SAE Int. J. Engines 4, 67–81. [Google Scholar]
  • Salazar V.M., Ghandhi J.B. (2009) Discussion of the role of fuel-oil diffusion in the hydrocarbon emissions from a small engine, SAE Int. J. Engines 1, 1347–1356. [Google Scholar]
  • Cerri T., D'Errico G., Montenegro G., Onorati A., Koltsakis G., Samaras Z., Michos K., Tziolas V., Zingopis N., Eggenschwiler P.D., Rojewski V., Papetti V., Soltic P. (2019) A novel 1D Co-simulation framework for the prediction of tailpipe emissions under different IC engine operating conditions, SAE Technical Paper 2019-24-0147, Society of Automotive Engineers, Available at [Google Scholar]
  • Lavoie G., Blumberg P.N. (1980) A fundamental model for predicting consumption, NOx, and HC emissions of the conventional spark-ignition engines, Combustion Science and Technology 21, 225–258. [CrossRef] [Google Scholar]
  • Zel’dovich Y.B. (1946) The oxidation of nitrogen in combustion explosions, Acta Physicochim. USSR 21, 577–628. [Google Scholar]
  • Malte P., Pratt D. (1974) The role of energy-releasing kinetics in NOx formation: fuel-lean, jet-stirred CO-air combustion, Combust. Sci. Technol. 9, 221–231. [CrossRef] [Google Scholar]
  • Ors I., Kahraman A., Ciniviz M. (2017) Performance, emission, and combustion analysis of a compression ignition engine using biofuel blends, Therm. Sci. 21, 1B, 511–22. [CrossRef] [Google Scholar]
  • Sugiarto B., Wibowo C.S., Zikra A., Budi A., Mulya T., Muchar M. (2019) Comparison of the gasoline fuels with octane number variations 88, 92, and 98 on the performance of 4 strokes single cylinder 150 CC spark-ignition engine, AIP Conf. Proc. 62, 020018. [CrossRef] [Google Scholar]
  • Thiyagarajan S., Sonthalia A., Geo V.E., Viswanathan K., Balasubramaniyam D. (2021) Effect of low carbon biofuel on carbon emissions in biodiesel fueled CI engine, in: Azad A.K., Khan M.M.K.(Eds.) Bioenergy resources and technologies, Academic Press an imprint of Elsevier, pp. 333–368. [Google Scholar]
  • Gossler H., Drost S., Porras S., Schießl R., Maas U., Deutschmann O. (2019) The internal combustion engine as a CO2 reformer, Combust. Flame 207, 186–195. [CrossRef] [Google Scholar]
  • Kashdan J.T., Mendez S., Bruneaux G. (2007) On the origin of unburned hydrocarbon emissions in a wall guided, low NOx diesel combustion system, SAE Trans. 116, 234–257. [Google Scholar]
  • Calam A., İçingür Y., Solmaz H., Yamık H. (2015) A comparison of engine performance and the emission of fusel oil and gasoline mixtures at different ignition timings, Int. J. Green Energy 12, 767–772. [CrossRef] [Google Scholar]
  • Praveena V., Bai F.J.J.S., Balasubramanian D., Devarajan Y., Aloui F., Varuvel E.G. (2023) Experimental assessment on the performance, emission, and combustion characteristics of a safflower oil fueled CI engine with hydrogen gas enrichment, Fuel 334, 2, 126682. [CrossRef] [Google Scholar]
  • Simsek S. (2020) Effects of biodiesel obtained from Canola, safflower oils, and waste oils on the engine performance and exhaust emissions, Fuel 265, 117026. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.