Open Access
Issue
Sci. Tech. Energ. Transition
Volume 79, 2024
Article Number 34
Number of page(s) 15
DOI https://doi.org/10.2516/stet/2024028
Published online 11 June 2024
  • Liu P., Yao J., Couples G.D., Ma J., Iliev O. (2017) 3-D modelling and experimental comparison of reactive flow in carbonates under radial flow conditions, Sci Rep 7, 17711. [Google Scholar]
  • Morad S., Al-Ramadan K., Ketzer J.M., Ros L.F.D. (2010) The impact of diagenesis on the heterogeneity of sandstone reservoirs: A review of the role of depositional facies and sequence stratigraphy, AAPG Bull 94, 1267–1309. [CrossRef] [Google Scholar]
  • Zhang R., Yao G., Shou J., Zhang H., Tian J. (2011) An integration porosity forecast model of deposition, diagenesis and structure, Shiyou Kantan Yu Kaifa/Petrol Explor Dev 38, 145–151. [Google Scholar]
  • Siebach K.L., Grotzinger J.P., Kah L.C., Stack K.M., Malin M., Léveillé R., Sumner D.Y. (2015) Subaqueous shrinkage cracks in the sheepbed mudstone: implications for early fluid diagenesis, gale crater, mars, J Geophys Res Planets 119, 1597–1613. [Google Scholar]
  • Kiraly L., (2002) Karstification and groundwater flow. In: Gabrovsek, F. (Ed.), Evolution of Karst: from Prekarst to Cessation. Postojna-Ljubljana: Institut za raziskovanje krasa, ZRC SAZU: 155–90. [Google Scholar]
  • Kaufmann G., Braun J. (2000) Karst aquifer evolution in fractured, porous rocks, Water Resour Res 36, 1381–1391. [Google Scholar]
  • Dubois C., Bini A., Quinif Y. (2022) Karst morphologies and ghostrock karstification, Geomorphologie 28, 13–31. [CrossRef] [Google Scholar]
  • Johnson J.W., Nitao J.J., Knauss K.G. (2004) Reactive transport modelling of CO2 storage in saline aquifers to elucidate fundamental processes, trapping mechanisms and sequestration partitioning, Geol Soc London Spec Publ 233, 107–128. [CrossRef] [Google Scholar]
  • Lagneau V., Pipart A., Catalette H. (2005) Reactive transport modelling and long term behaviour of CO2 sequestration in saline aquifers, Oil Gas Sci Technol 60, 231–247. [CrossRef] [Google Scholar]
  • Kang Q., Lichtner P.C., Viswanathan H.S., Abdel-Fattah A.I. (2010) Pore scale modeling of reactive transport involved in geologic CO2 sequestration, Trans Porous Media 82, 197–213. [Google Scholar]
  • Islam A., Sun A.Y., Yang C. (2016) Reactive transport modeling of the enhancement of density-driven CO2 convective mixing in carbonate aquifers and its potential implication on geological carbon sequestration, Sci Rep 6, 24768. [Google Scholar]
  • Gao G., Fu B., Zhan H., Ma Y. (2013) Contaminant transport in soil with depth-dependent reaction coefficients and time-dependent boundary conditions, Water Res 47, 2507–2522. [Google Scholar]
  • Banaei S., Javid A., Hassani A. (2021) Numerical simulation of groundwater contaminant transport in porous media, Int J Environ Sci Technol 18, 151–162. [Google Scholar]
  • Ozgen-Xian I., Navas-Montilla A., Dwivedi D., Molins S. (2021) Hyperbolic reformulation approach to enable efficient simulation of groundwater flow and reactive transport, Environ Eng Sci 38, 181–191. [CrossRef] [Google Scholar]
  • Kang Q., Zhang D., Chen S. (2003) Simulation of dissolution and precipitation in porous media, J Geophys Res Solid Earth 108, B10, 2505. [Google Scholar]
  • Kang Q., Lichtner P.C., Zhang D. (2006) Lattice Boltzmann pore-scale model for multicomponent reactive transport in porous media, J Geophys Res Solid Earth 111, B05203. [Google Scholar]
  • Dong K. (2018) A new wormhole propagation model at optimal conditions for carbonate acidizing, J Pet Sci Eng 171, 1309–1317. [Google Scholar]
  • dos Santos Lucas C.R., Neyra J.R., Araüjo E.A., da Silva D.N.N., Lima M.A., Ribeiro D.A.M., Aum P.T.P. (2023) Carbonate acidizing – a review on influencing parameters of wormholes formation, J Pet Sci Eng 220, 111168. [Google Scholar]
  • Frick T., Mostofizadeh B., Economides M. (1994) Analysis of radial core experiments for hydrochloric acid interaction with limestones, in: SPE Formation Damage Control Symposium, OnePetro, pp. 1–6. [Google Scholar]
  • Bazin B. (2001) From matrix acidizing to acid fracturing: a laboratory evaluation of acid/rock interactions, SPE Prod Facil 16, 22–29. [Google Scholar]
  • Dong K., Jin X., Zhu D., Hill A. (2014) The effect of core dimensions on the optimum acid flux in carbonate acidizing, in: SPE International Symposium and Exhibition on Formation Damage Control, OnePetro, pp. 1–10. [Google Scholar]
  • Karale C., Beuterbaugh A., Pinto M., Hipparge G., Prakash A. (2016) Hp/HT carbonate acidizing – recent discoveries and contradictions in wormhole phenomenon, in: Offshore Technology Conference Asia, OnePetro, pp. 1–23. [Google Scholar]
  • Cheng H., Zhu D., Hill A. (2017) The effect of evolved CO2 on wormhole propagation in carbonate acidizing, SPE Prod Oper 32, 325–332. [Google Scholar]
  • Golfier F., Zarcone C., Bazin B., Lenormand R., Lasseux D., Quintard M. (2002) On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium, J Fluid Mech 457, 213–254. [CrossRef] [Google Scholar]
  • Panga M.K., Ziauddin M., Balakotaiah V. (2005) Two-scale continuum model for simulation of wormholes in carbonate acidization, AIChE J 51, 3231–3248. [CrossRef] [Google Scholar]
  • Kalia N., Balakotaiah V. (2007) Modeling and analysis of wormhole formation in reactive dissolution of carbonate rocks, Chem Eng Sci 62, 919–928. [CrossRef] [Google Scholar]
  • Cohen C.E., Ding D., Quintard M., Bazin B. (2008) From pore scale to wellbore scale: Impact of geometry on wormhole growth in carbonate acidization, Chem Eng Sci 63, 3088–3099. [CrossRef] [Google Scholar]
  • Kalia N., Glasbergen G. (2009) Wormhole formation in carbonates under varying temperature conditions, in: 8th European Formation Damage Conference, OnePetro, pp. 1–19. [Google Scholar]
  • Kalia N., Glasbergen G. (2010) Fluid temperature as a design parameter in carbonate matrix acidizing, in: SPE Production and Operations Conference and Exhibition, OnePetro, pp. 1–21. [Google Scholar]
  • Liu M., Zhang S., Mou J. (2012) Effect of normally distributed porosities on dissolution pattern in carbonate acidizing, J Pet Sci Eng 94, 28–39. [Google Scholar]
  • Liu P., Xue H., Zhao L., Zhao X., Cui M. (2016) Simulation of 3D multi-scale wormhole propagation in carbonates considering correlation spatial distribution of petrophysical properties, J Nat Gas Sci Eng 32, 81–94. [Google Scholar]
  • Bastami A., Pourafshary P. (2016) Development of a new model for carbonate matrix acidizing to consider the effects of spent acid, J Energy Res Technol 138, 1–13. [CrossRef] [Google Scholar]
  • Yuan T., Ning Y., Qin G. (2016) Numerical modeling and simulation of coupled processes of mineral dissolution and fluid flow in fractured carbonate formations, Trans Porous Media 114, 747–775. [Google Scholar]
  • Wei W., Varavei A., Sepehrnoori K. (2017) Modeling and analysis on the effect of two-phase flow on wormhole propagation in carbonate acidizing, SPE J 22, 2067–2083. [Google Scholar]
  • Mahmoodi A., Javadi A., Sola B.S. (2018) Porous media acidizing simulation: New two-phase two-scale continuum modeling approach, J Pet Sci Eng 166, 679–692. [Google Scholar]
  • Babaei M., Sedighi M. (2018) Impact of phase saturation on wormhole formation in rock matrix acidizing, Chem Eng Sci 177, 39–52. [CrossRef] [Google Scholar]
  • Trabucchi M., Garcia D.F., Carrera J. (2023) Visualizing and evaluating wormholes formation dynamics under flow competition in an intermediate-scale dissolution experiment, Sci Total Environ 867. [Google Scholar]
  • Maheshwari P., Balakotaiah V. (2013) Comparison of carbonate HCL acidizing experiments with 3D simulations, SPE Prod Oper 28, 402–413. [Google Scholar]
  • Lv Y., Wei P., Zhu X., Gan Q., Li H. (2021) THMCD modeling of carbonate acdizing with HCL acid, J Pet Sci Eng 206, 108940. [Google Scholar]
  • Gao B., Li Y., Pang Z., Huang T., Kong Y., Li B., Zhang F. (2024) Geochemical mechanisms of water/CO2-rock interactions in EGS and its impacts on reservoir properties: a review, Geothermics 118, 102923. [CrossRef] [Google Scholar]
  • Berrezueta E., Kovacs T., Herrera-Franco G., Mora-Frank C., Caicedo-Potosí J., Carrion-Mero P., Carneiro J. (2023) Laboratory studies on CO2-brine-rock interaction: an analysis of research trends and current knowledge, Int J Greenhouse Gas Control 123, 103842. [CrossRef] [Google Scholar]
  • Gaus I. (2010) Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks, Int J Greenhouse Gas Control 4, 73–89. [CrossRef] [Google Scholar]
  • Li N., Zeng F.B., Li J., Zhang Q., Feng Y., Liu P. (2016) Kinetic mechanics of the reactions between HCL/HF acid mixtures and sandstone minerals, J Nat Gas Sci Eng 34, 792–802. [Google Scholar]
  • Gomaa I., Mahmoud M., Kamal M.S. (2020) Sandstone acidizing using a low-reaction acid system, J Energy Res Technol 142, 103008. [CrossRef] [Google Scholar]
  • Gomaa I., Mahmoud M., Kamal M.S. (2020) Novel approach for sandstone acidizing using in situ-generated hydrofluoric acid with the aid of thermochemicals, ACS Omega 5, 1188–1197. [CrossRef] [PubMed] [Google Scholar]
  • Safari A., Dowlatabad M.M., Hassani A., Rashidi F. (2016) Numerical simulation and X-ray imaging validation of wormhole propagation during acid core-flood experiments in a carbonate gas reservoir, J Nat Gas Sci Eng 30, 539–547. [Google Scholar]
  • Seigneur N., Mayer K.U., Steefel C.I. (2019) Reactive transport in evolving porous media, Rev Mineral Geochem 85, 197–238. [Google Scholar]
  • Kalia N., Balakotaiah V. (2009) Effect of medium heterogeneities on reactive dissolution of carbonates, Chem Eng Sci 64, 376–390. [CrossRef] [Google Scholar]
  • Izgec O., Zhu D., Hill A.D. (2010) Numerical and experimental investigation of acid wormholing during acidization of vuggy carbonate rocks, J Pet Sci Eng 74, 51–66. [Google Scholar]
  • Chen Y., Ma G., Li T., Wang Y., Ren F. (2018) Simulation of wormhole propagation in fractured carbonate rocks with unifled pipe-network method, Comput Geotech 98, 58–68. [CrossRef] [Google Scholar]
  • Khoei A., Sichani A.S., Hosseini N. (2020) Modeling of reactive acid transport in fractured porous media with the extended-fem based on Darcy-Brinkman-Forchheimer framework, Comp Geotech 128, 103778. [CrossRef] [Google Scholar]
  • Huang Z., Xing H., Zhou X., You H. (2020) Numerical study of vug effects on acid-rock reactive flow in carbonate reservoirs, Adv Geo-Energy Res 4, 448–459. [Google Scholar]
  • Liu P., Yao J., Couples G.D., Ma J., Huang Z., Sun H. (2017) Modeling and simulation of wormhole formation during acidization of fractured carbonate rocks, J Pet Sci Eng 154, 284–301. [Google Scholar]
  • Qi N., Chen G., Liang C., Guo T., Liu G., Zhang K. (2019) Numerical simulation and analysis of the influence of fracture geometry on wormhole propagation in carbonate reservoirs, Chem Eng Sci 198, 124–143. [CrossRef] [Google Scholar]
  • Jia C., Sepehrnoori K., Zhang H., Yao J. (2021) Numerical studies and analyses on the acidizing process in vug carbonate rocks, Front Earth Sci 9, 712566. [CrossRef] [Google Scholar]
  • Asl A.M., Sedaee B., Kandowjani A.E. (2024) Fracture and vug effects on wormhole pattern during acidizing of triple porosity carbonate rocks, Geoenergy Sci Eng 232, 212417. [CrossRef] [Google Scholar]
  • Wang L., Mou J., Mo S., Zhao B., Liu Z., Tian X. (2020) Modeling matrix acidizing in naturally fractured carbonate reservoirs, J Pet Sci Eng 186, 106685. [Google Scholar]
  • Liu P., Kong X., Feng G., Zhang K., Sun S., Yao J. (2023) Three-dimensional simulation of wormhole propagation in fractured-vuggy carbonate rocks during acidization, Adv Geo-Energy Res 7, 199–210. [Google Scholar]
  • Ratnakar R., Kalia N., Balakotaiah V. (2012) Carbonate matrix acidizing with gelled acids: An experiment-based modeling study, in: SPE International Production and Operations Conference & Exhibition, OnePetro, pp. 1–16. [Google Scholar]
  • Maheshwari P., Maxey J., Balakotaiah V. (2016) Reactive-dissolution modeling and experimental comparison of wormhole formation in carbonates with gelled and emulsified acids, SPE Prod Oper 31, 103–119. [Google Scholar]
  • Liu P., Li J., Sun S., Yao J., Zhang K. (2021) Numerical investigation of carbonate acidizing with gelled acid using a coupled thermal-hydrologic-chemical model, Int J Therm Sci 160, 106700. [CrossRef] [Google Scholar]
  • Liu P., Yan X., Yao J., Sun S. (2019) Modeling and analysis of the acidizing process in carbonate rocks using a two-phase thermal-hydrologic-chemical coupled model, Chem Eng Sci 207, 215–234. [CrossRef] [Google Scholar]
  • Liu P., Yao J., Couples G.D., Huang Z., Sun H., Ma J. (2017) Numerical modelling and analysis of reactive flow and wormhole formation in fractured carbonate rocks, Chem Eng Sci 172, 143–157. [CrossRef] [Google Scholar]
  • Panga M.K.R. (2003) Multiscale transport and reaction: two case studies, University of Houston. [Google Scholar]
  • Kalia N. (2008) Modeling and analysis of reactive dissolution of carbonate rocks, University of Houston. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.