Open Access
Issue |
Sci. Tech. Energ. Transition
Volume 79, 2024
Power Components For Electric Vehicles
|
|
---|---|---|
Article Number | 35 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.2516/stet/2024029 | |
Published online | 11 June 2024 |
- Thuttampatty Krishnamoorthy S., Vanitha Narayanan S., Kannan R. (2020) Real-time simulation of efficient energy management algorithms for electric vehicle chargers, in Intelligent and efficient transport systems design, modelling, control and simulation, T.Q. Dinh (ed.), IntechOpen, London, UK, pp. 113–131. Available at https://www.intechopen.com. [Google Scholar]
- Drobnic K., Grandi G., Hammami M., Mandrioli R., Ricco M., Viatkin A., Vujacic M. (2019) An output ripple-free fast charger for electric vehicles based on grid-tied modular three-phase interleaved converters, IEEE Trans. Ind. Appl. 55, 6, 6102–6114. https://doi.org/10.1109/TIA.2019.2934082. [CrossRef] [Google Scholar]
- Bayati M., Abedi M., Farahmandrad M., Gharehpetian G.B., Tehrani K. (2021) Important technical considerations in design of battery chargers of electric vehicles, Energies (Basel) 14, 5878. https://doi.org/10.3390/en14185878. [CrossRef] [Google Scholar]
- Mądziel M., Campisi T. (2023) Energy consumption of electric vehicles: analysis of selected parameters based on created database, Energies (Basel) 16, 3. https://doi.org/10.3390/en16031437. [Google Scholar]
- Jaworski A., Mądziel M., Lew K., Campisi T., Woś P., Kuszewski H., Wojewoda P., Ustrzycki A., Balawender K., Jakubowski M. (2022) Evaluation of the effect of chassis dynamometer load setting on CO2 emissions and energy demand of a full hybrid vehicle, Energies 15, 1, 122. https://doi.org/10.3390/en15010122. [Google Scholar]
- Town G., Taghizadeh S., Deilami S. (2022) Review of fast charging for electrified transport: demand, technology, systems, and planning, Energies 15, 4, 1276. https://doi.org/10.3390/en15041276. [CrossRef] [Google Scholar]
- Ntombela M., Musasa K., Moloi K. (2023) A comprehensive review for battery electric vehicles (BEV) drive circuits technology, operations, and challenges, World Electr. Veh. J. 14, 7, 195. https://doi.org/10.3390/WEVJ14070195. [CrossRef] [Google Scholar]
- Taghizad-Tavana K., Alizadeh A., Ghanbari-Ghalehjoughi M., Nojavan S. (2023) A comprehensive review of electric vehicles in energy systems: integration with renewable energy sources, charging levels, different types, and standards, Energies 16, 2, 630. https://doi.org/10.3390/EN16020630. [CrossRef] [Google Scholar]
- Kumar S., Usman A., Rajpurohit B.S. (2021) Battery charging topology, infrastructure, and standards for electric vehicle applications: a comprehensive review, IET Energy Syst. Integr. 3, 4, 381–396. https://doi.org/10.1049/ESI2.12038. [CrossRef] [Google Scholar]
- Arandhakar S., Jayaram N., Shankar Y.R., Gaurav, Kishore P.S.V., Halder S. (2022) Emerging intelligent bidirectional charging strategy based on recurrent neural network accosting EMI and temperature effects for electric vehicle, IEEE Access 10, 121741–121761. https://doi.org/10.1109/ACCESS.2022.3223443. [CrossRef] [Google Scholar]
- Navas S.J., González G.M.C., Pino F.J., Guerra J.J. (2023) Modelling Li-ion batteries using equivalent circuits for renewable energy applications, Energy Rep. 9, 4456–4465. https://doi.org/10.1016/J.EGYR.2023.03.103. [CrossRef] [Google Scholar]
- Bai H., Zhang Y., Semanson C., Luo C., Mi C.C. (2011) Modelling, design and optimisation of a battery charger for plug-in hybrid electric vehicles, IET Electr. Sys. Transp. 1, 1, 3–10. https://doi.org/10.1049/iet-est.2010.0038. [CrossRef] [MathSciNet] [Google Scholar]
- Narasipuram R.P., Mopidevi S. (2023) “A novel hybrid control strategy and dynamic performance enhancement of a 3.3 kW GaN–HEMT-based iL2C resonant full-bridge DC–DC power converter methodology for electric vehicle charging systems, Energies (Basel) 16, 15, 5811. https://doi.org/10.3390/en16155811. [CrossRef] [Google Scholar]
- Esfahani F.N., Darwish A., Williams B.W. (2022) Power converter topologies for grid-tied solar photovoltaic (PV) powered electric vehicles (EVs) – a comprehensive review, Energies 15, 13, 4648. https://doi.org/10.3390/en15134648. [CrossRef] [Google Scholar]
- Ali A., Mousa H.H.H., Shaaban M.F., Azzouz M.A., Awad A.S.A. (2023) A comprehensive review on charging topologies and power electronic converter solutions for electric vehicles, J. Mod. Power Syst. Clean Energy 1–19. https://doi.org/10.35833/MPCE.2023.000107. [Google Scholar]
- Safayatullah M., Elrais M.T., Ghosh S., Rezaii R., Batarseh I. (2022) A comprehensive review of power converter topologies and control methods for electric vehicle fast charging applications, IEEE Access 10, 40753–40793. https://doi.org/10.1109/ACCESS.2022.3166935. [CrossRef] [Google Scholar]
- Chae B., Kang T., Kang T., Suh Y. (2015) Carrier based PWM for three-phase three-switch buck-type rectifier in EV rapid charging system, in 9th International Conference on Power Electronics – ECCE Asia: Green World with Power Electronics, ICPE 2015-ECCE Asia 1–5 June, Seoul, Korea (South), IEEE, pp. 881–889. https://doi.org/10.1109/ICPE.2015.7167886. [Google Scholar]
- Elserougi A., Abdelsalam I., Massoud A. (2022) An isolated-boost-converter-based unidirectional three-phase off-board fast charger for electric vehicles, IET Electr. Syst. Transp. 12, 1, 79–88. https://doi.org/10.1049/ELS2.12039. [CrossRef] [Google Scholar]
- Rajendran G., Vaithilingam C.A., Naidu K., Oruganti K.S.P. (2020) Energy-efficient converters for electric vehicle charging stations, SN Appl. Sci. 2, 4, 1–15. https://doi.org/10.1007/S42452-020-2369-0/TABLES/6. [Google Scholar]
- Sweety P., Assistant J., Lakshmi M.M. (2021) Vienna rectifier for electric vehicle charging station, Int. J. Mech. Eng. 6, 3, 974–5823. [Google Scholar]
- Mohammed S.A.Q., Jung J.W. (2021) A comprehensive state-of-the-art review of wired/wireless charging technologies for battery electric vehicles: classification/common topologies/future research issues, IEEE Access 9, 19572–19585. https://doi.org/10.1109/ACCESS.2021.3055027. [CrossRef] [Google Scholar]
- De Freige M. (2011) Design and simulation of a fast-charging station for plug-in hybrid electric vehicle (PHEV) batteries, Thesis. Available at https://escholarship.mcgill.ca/concern/theses/j098zg18r [Google Scholar]
- Acharige S.S.G., Haque M.E., Arif M.T., Hosseinzadeh N., Hasan K.N., Oo A.M.T. (2023) Review of electric vehicle charging technologies, standards, architectures, and converter configurations, IEEE Access 41218–41255. https://doi.org/10.1109/ACCESS.2023.3267164. [CrossRef] [Google Scholar]
- Nasir A., Hamad M.S., Elshenawy A.K. (2021) Design and development of a constant current constant voltage fast battery charger for electric vehicles, in 4th International Conference on Modern Research in Science, Engineering and Technology, 5–7, March, Berlin, Germany.. [Google Scholar]
- Yan Z., Yin Z., Yang X., Zhang K., Shi J., Wang L. (2018) Research and simulation of centralized charge and discharge technology of EVs based on MMC, in 2nd International Conference on Power and Renewable Energy (ICPRE), 20–23 September, Chengdu, China, IEEE, pp. 800–804. https://doi.org/10.1109/ICPRE.2017.8390644. [Google Scholar]
- Ciccarelli F., Del Pizzo A., Iannuzzi D. (2013) An ultra-fast charging architecture based on modular multilevel converters integrated with energy storage buffers, in 8th International Conference and Exhibition on Ecological Vehicles and Renewable Energies (EVER), 7–30 March, Monte Carlo, Monaco. https://doi.org/10.1109/EVER.2013.6521617. [Google Scholar]
- Deng J., Li S., Hu S., Mi C.C., Ma R. (2014) Design methodology of LLC resonant converters for electric vehicle battery chargers, IEEE Trans. Veh. Technol. 63, 4, 1581–1592. https://doi.org/10.1109/TVT.2013.2287379. [CrossRef] [Google Scholar]
- Valadkhani S., Mirsalim M., Gharehpetian G.B. (2021) Bidirectional isolated DC/DC dual-active-bridge converters optimum soft-switching control method for electrical vehicle applications, in 29th Iranian Conference on Electrical Engineering (ICEE), 18–20 May, Tehran, Iran, Islamic Republic of IEEE, pp. 363–367. https://doi.org/10.1109/ICEE52715.2021.9544312. [Google Scholar]
- Chaurasiya S., Singh B. (2023) A bidirectional fast EV charger for wide voltage range using three-level DAB based on current and voltage stress optimization, IEEE Trans. Transp. Electrif. 9, 1, 1330–1340. https://doi.org/10.1109/TTE.2022.3201979. [CrossRef] [Google Scholar]
- Naik N., Vyjayanthi C., Modi C. (2023) Filter-based active damping of DAB converter to lower battery degradation in EV fast charging application, IEEE Access 11, 74277–74289. https://doi.org/10.1109/ACCESS.2023.3295988. [CrossRef] [Google Scholar]
- Mishra M., Sarkar I. (2023) EV battery charging using DAB DC-DC converter with EPS and DPS modulations, in IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), 18–19 February, Bhopal, India. https://doi.org/10.1109/SCEECS57921.2023.10063090. [Google Scholar]
- Deepak M., Janaki G., Bharatiraja C. (2023) Single phase shift dual active bridge high frequency DC-DC converter for electric vehicle battery charger 6.6 kW, in 5th International Conference on Electrical, Computer and Communication Technologies (ICECCT), 22–24, February, Erode, Tamil Nadu, India. https://doi.org/10.1109/ICECCT56650.2023.10179621. [Google Scholar]
- Chen Z., Huang A.Q. (2024) Extreme high efficiency enabled by silicon carbide (SiC) power devices, Mater. Sci. Semicond. Process 172, 108052. https://doi.org/10.1016/J.MSSP.2023.108052. [CrossRef] [Google Scholar]
- Naz H., Jamil M., Kirmani S. (2023) Real-time simulation of battery electric vehicle with PI controller tuned by particle swarm optimization (PSO) algorithm using OPAL-RT, in in International Conference on Power, Instrumentation, Energy and Control (PIECON), 10–12 February, Aligarh, India, IEEE. https://doi.org/10.1109/PIECON56912.2023.10085822. [Google Scholar]
- Liu S., Xin D., Yang L., Li J., Wang L. (2020) A hierarchical V2G/G2V energy management system for electric-drive-reconstructed onboard converter, IEEE Access 8, 198201–198213. https://doi.org/10.1109/ACCESS.2020.3034968. [CrossRef] [Google Scholar]
- Knez M., Zevnik G.K., Obrecht M. (2019) A review of available chargers for electric vehicles: United States of America, European Union, and Asia, Renew. Sustain. Energy Rev. 109, 284–293. https://doi.org/10.1016/j.rser.2019.04.013. [CrossRef] [Google Scholar]
- Duru K.K., Karra C., Venkatachalam P., Betha S.A., Anish Madhavan A., Kalluri S. (2021) Critical insights into fast charging techniques for lithium-ion batteries in electric vehicles, IEEE Trans. Device Mater. Reliab. 21, 1, 137–152. https://doi.org/10.1109/TDMR.2021.3051840. [CrossRef] [Google Scholar]
- Mohanty A., Viswavandya M., Ray P.K., Mohanty S. (2018) Literature survey on OPAL-RT technologies with advance features and industrial applications, in 1st International Conference on Advanced Research in Engineering Sciences (ARES), 15 June, Dubai, United Arab Emirates, IEEE. https://doi.org/10.1109/ARESX.2018.8723268. [Google Scholar]
- Yoon H.M., Kim J.H., Song E.H. (2013) Design of a novel 50 kW fast charger for electric vehicles, J. Cent. South Univ. 20, 2, 372–377. https://doi.org/10.1007/s11771-013-1497-8. [CrossRef] [Google Scholar]
- Rachid A., El Fadil H., Gaouzi K., Rachid K., Lassioui A., El Idrissi Z., Koundi M. (2023) Electric vehicle charging systems: comprehensive review, Energies 16, 1, 255. https://doi.org/10.3390/en16010255. [Google Scholar]
- Messaoudi H., Bourogaoui M., Ben Abdelghani A.B. (2022) Design of a smart and fast charger for electric vehicles, in IEEE International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM) 26–28 October, Tunis, Tunisia. https://doi.org/10.1109/CISTEM55808.2022.10043937. [Google Scholar]
- Adaikkappan M., Sathiyamoorthy N. (2022) Modeling, state of charge estimation, and charging of lithium-ion battery in electric vehicle: a review, Int. J. Energy Res. 46, 3, 2141–2165. https://doi.org/10.1002/er.7339. [CrossRef] [Google Scholar]
- Yilmaz M., Krein P.T. (2013) Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles, IEEE Trans. Power Electron. 28, 5, 2151–2169. https://doi.org/10.1109/TPEL.2012.2212917. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.