Open Access
Sci. Tech. Energ. Transition
Volume 78, 2023
Article Number 15
Number of page(s) 9
Published online 12 July 2023
  • Comello S., Reichelstein S., Sahoo A. (2018) The road ahead for solar PV power, Renewable Sustainable Energy Rev. 92, 744–756. [CrossRef] [Google Scholar]
  • Lin P., Peng Z., Lai Y., Cheng S., Chen Z., Wu L. (2018) Short-term power prediction for photovoltaic power plants using a hybrid improved Kmeans-GRA-Elman model based on multivariate meteorological factors and historical power datasets, Energy Convers. Manage. 177, 704–717. [CrossRef] [Google Scholar]
  • Li J., Luo Y., Yang S., Wei S., Huang Q. (2021) Review of renewable energy power uncertainty prediction methods, High Volt. Technol. 47, 4, 1144–1157. [Google Scholar]
  • Sobri S., Koohi-Kamali S., Abd Rahim N. (2018) Solar photovoltaic generation forecasting methods: A review, Energy Convers. Manage. 156, 459–497. [CrossRef] [Google Scholar]
  • Yao X., Mao S. (2023) Electric supply and demand forecasting using seasonal grey model based on PSO-SVR, Grey Syst. Theory Appl. 13, 1, 141–171. [CrossRef] [Google Scholar]
  • Yu N., Li X., Fei K., Ren J., Ni X. (2020) Based on SVR – UKF photovoltaic power station power prediction, Autom. Instrum. 246, 4, 73–77. [Google Scholar]
  • Wang X., Liu J., Hu B., Zheng L. (2020) Based on CS – SVR model of short-term wind power prediction, Comput. Meas. Control. 28, 1, 152–155. [Google Scholar]
  • Li M., Gu Y., Zhang Y., Gao X., Wei G. (2023) Quantitative prediction of ternary mixed gases based on an SnO2 sensor array and an SSA-BP neural net-work model, Phys. Chem. Chem. Phys. 25, 10935–10945. [CrossRef] [PubMed] [Google Scholar]
  • Li N., Wang Y., Ma W., Xiao Z., An Z. (2022) A wind power prediction method based on DE-BP neural network, Front. Energy Res. 10, 15–25. [Google Scholar]
  • Liu W., Guo Z.-Q., Wang D., Liu G.-W., Jiang F., Niu Y.-J., Ma L.-X. (2023) Whales algorithm and its weights in the shallow layer neural network search threshold optimization, J. Control Decis. 38, 4, 1144–1152. [Google Scholar]
  • Zhang Y., Cheng Q., Jiang W., Liu X., Shen L., Chen Z.H. (2021) Photovoltaic power prediction model based on EMD-PCA-LSTM, Acta Energiae Solaris Sinica 42, 9, 62–69. [Google Scholar]
  • Zhang L., Wang X., Wu H., Xie L., Teng Y., Wei Y. (2023) Based on FCM and LSTM photovoltaic power short-term prediction, Power Supply 40, 1, 10–17. [Google Scholar]
  • Huang Y., Zhang X., Yang L. (2019) Short-term wind speed prediction based on EEMD-LSTM, J. Phys. Conf. Ser. 1314, 012105. [Google Scholar]
  • Liu D., Zhou L., Zheng X. (2021) Super short-term power load forecasting based on SA - DBN, J. Guangxi Normal University (Natural Science Edition) 33, 4, 21–33. [Google Scholar]
  • Zhang C., He Y., Jiang S., Wang T., Yuan L., Li B. (2019) Transformer fault diagnosis method based on self-powered RFID sensor tag, DBN, and MKSVM, IEEE Sens. J. 19, 18. [Google Scholar]
  • Garai S., Paul R.K. (2023) Development of MCS based-ensemble models using CEEMDAN decomposition and machine intelligence, Intell. Syst. Appl. 18, 200202. [Google Scholar]
  • He Y., Zhou C., Hu Y. (2023) Application of LSTM method combined with feature optimization in chiller failure detection, J. Phys. Conf. Ser. 2442, 012026. [Google Scholar]
  • Wang J., Hao S., Li S., Wang T.-Z., Zhang W. Prediction of wind farm group power based on ES-GRU-LSTM, Comput. Technol. Automat. 202, 37–41 (in Chinese). [Google Scholar]
  • Zeng W., Cao Y., Feng L., Fan J., Zhong M., Mo W., Tan Z. (2023) Hybrid CEEMDAN-DBN-ELM for online DGA serials and transformer status forecasting, Electr. Power Syst. Res. 217, 109176. [CrossRef] [Google Scholar]
  • Xue J. (2020) Research and application of a new swarm intelligence optimization technique, Donghua University. [Google Scholar]
  • Jiankai X., Bo S. (2020) A novel swarm intelligence optimization approach: sparrow search algorithm, Syst. Sci. Control Eng. 8, 1, 22–34. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.