Open Access
Sci. Tech. Energ. Transition
Volume 78, 2023
Article Number 16
Number of page(s) 16
Published online 13 July 2023
  • Kaskun Ergani S., Kocaman A., Akinay Y. (2021) Al2O3/SiO2 nanoparticles-coated TiO2 catalyst on the exhaust pollutants of a diesel engine, Appl. Nanosci. 11, 2759–2766. [CrossRef] [Google Scholar]
  • Uslu S., Celik M.B. (2018) Experimental investigation of the effects of diethyl ether- diesel fuel blends on engine parameters in a low power diesel engine, Int. J. Eng. Sci. Res. Technol. 7, 1–13. [Google Scholar]
  • Uslu S., Simsek S., Simsek H. (2023) RSM modeling of different amounts of nano-TiO2 supplementation to a diesel engine running with hemp seed oil biodiesel/diesel fuel blends, Energy 266, 126439. [CrossRef] [Google Scholar]
  • Şimsek S., Gürüf G., Uslu S., Şimşek H. (2023) Exergy, exergoeconomic, enviroeconomic, and sustainability index analysis of diesel engine fueled by binary combinations of diesel/waste animal fat biodiesel, J. Therm. Anal. Calorim.. In press. [Google Scholar]
  • Mccaffery C., Zhu H., Ahmed C.M.S., Canchola A., Chen J.Y., Li C., Johnson K.C., Durbin T.D., Lin Y., Karavalakis G. (2022) Effects of hydrogenated vegetable oil (HVO) and HVO/biodiesel blends on the physicochemical and toxicological properties of emissions from an off-road heavy-duty diesel engine, Fuel. 323, 124283. [CrossRef] [Google Scholar]
  • Uysal C., Uslu S., Aydin M. (2022) Exergetic and exergoeconomic analyses of a diesel engine fueled with binary and ternary blends of diesel–palm oil biodiesel–diethyl ether for various injection timings, J. Therm. Anal. Calorim. 147, 12641–12659. [CrossRef] [Google Scholar]
  • Zhang X., Li N., Han S., Wei Z., Dai B. (2022) Terpene resin prepared from renewable turpentine oil as a new type of cold flow improver for soybean biodiesel-diesel blends, Fuel. 320, 123844. [CrossRef] [Google Scholar]
  • Thangaraj B., Solomon P.R., Muniyandi B., Ranganathan S., Lin L. (2019) Catalysis in biodiesel production – A review, Clean, Energy 3, 2–23. [Google Scholar]
  • Dey S., Reang N.M., Das P.K., Deb M. (2021) A comprehensive study on prospects of economy, environment, and efficiency of palm oil biodiesel as a renewable fuel, J. Clean. Prod. 286, 124981. [CrossRef] [Google Scholar]
  • Appavu P., Madhavan V.R., Venu H., Jayaraman J. (2021) Experimental investigation of an unmodified diesel engine operated with ternary fuel, Biofuels 12, 1183–1189. [CrossRef] [Google Scholar]
  • Zhu L., Cheung C.S., Zhang W.G., Fang J.H., Huang Z. (2013) Effects of ethanol-biodiesel blends and diesel oxidation catalyst (DOC) on particulate and unregulated emissions, Fuel. 113, 690–696. [CrossRef] [Google Scholar]
  • Russell A., Epling W.S. (2011) Diesel oxidation catalysts, Catal. Rev. – Sci. Eng. 53, 337–423. [CrossRef] [Google Scholar]
  • Balaji G., Cheralathan M. (2014) Effect of CNT as additive with biodiesel on the performance and emission characteristics of a DI diesel engine, Int. J. ChemTech Res. 7, 1230–1236. [Google Scholar]
  • Aghbashlo M., Tabatabaei M., Khalife E., Najafi B., Mirsalim S.M., Gharehghani A., Mohammadi P., Dadak A., Roodbar Shojaei T., Khounani Z. (2017) A novel emulsion fuel containing aqueous nano cerium oxide additive in diesel–biodiesel blends to improve diesel engines performance and reduce exhaust emissions: Part II – Exergetic analysis, Fuel. 205, 262–271. [CrossRef] [Google Scholar]
  • Lenin M.A., Swaminathan M.R., Kumaresan G. (2013) Performance and emission characteristics of a DI diesel engine with a nanofuel additive, Fuel 109, 362–365. [CrossRef] [Google Scholar]
  • Anbarasu A., Karthikeyan A., Balaji M. (2016) Performance and emission characteristics of diesel engine using alumina nanoparticle blended biodiesel emulsion fuel, J. Energy Resour. Technol. Trans. ASME. 138, 1–6. [CrossRef] [Google Scholar]
  • Appavu P., Venkata Ramanan M. (2020) Study of emission characteristics of a diesel engine using cerium oxide nanoparticle blended pongamia methyl ester, Int. J. Ambient Energy. 41, 524–527. [CrossRef] [Google Scholar]
  • D’Silva R., Binu K.G., Bhat T. (2015) Performance and emission characteristics of a C.I. engine fuelled with diesel and TiO2 nanoparticles as fuel additive, Mater. Today Proc. 2, 3728–3735. [CrossRef] [Google Scholar]
  • Sajith V., Sobhan C.B., Peterson G.P. (2010) Experimental investigations on the effects of cerium oxide nanoparticle fuel additives on biodiesel, Adv. Mech. Eng. 2, 581407. [CrossRef] [Google Scholar]
  • Prabu A. (2018) Nanoparticles as additive in biodiesel on the working characteristics of a DI diesel engine, Ain Shams Eng. J. 9, 2343–2349. [CrossRef] [Google Scholar]
  • Firew D., Nallamothu R.B., Alemayehu G., Gopal R. (2022) Performance and emission evaluation of CI engine fueled with ethanol diesel emulsion using NiZnFe2O4 nanoparticle additive, Heliyon 8, 11639. [Google Scholar]
  • Perumal V., Ilangkumaran M. (2018) The influence of copper oxide nano particle added pongamia methyl ester biodiesel on the performance, combustion and emission of a diesel engine, Fuel 232, 791–802. [CrossRef] [Google Scholar]
  • Muruganantham P., Pandiyan P., Sathyamurthy R. (2021) Analysis on performance and emission characteristics of corn oil methyl ester blended with diesel and cerium oxide nanoparticle, Case Stud. Therm. Eng. 26, 101077. [CrossRef] [Google Scholar]
  • Alex Y., Earnest J., Raghavan A., Roy R.G., Koshy C.P. (2022) Study of engine performance and emission characteristics of diesel engine using cerium oxide nanoparticles blended orange peel oil methyl ester, Energy Nexus. 8, 100150. [CrossRef] [Google Scholar]
  • Soudagar M.E.M., Mujtaba M.A., Safaei M.R., Afzal A., Raju D., Ahmed W., Banapurmath N.R., Hossain N., Bashir S., Badruddin I.A., Goodarzi M., Shahapurkar K. (2021) Taqui, Effect of Sr@ZnO nanoparticles and Ricinus communis biodiesel-diesel fuel blends on modified CRDI diesel engine characteristics, Energy. 215. [Google Scholar]
  • Aydar A.Y. (2018) Utilization of response surface methodology in optimization of extraction of plant materials, Stat. Approaches With Emphas. Des. Exp. Appl. Chem. Process. 10, 157–169. [Google Scholar]
  • Uslu S., Celik M. (2023) Response surface methodology-based optimization of the amount of cerium dioxide (CeO2) to increase the performance and reduce emissions of a diesel engine fueled by cerium dioxide/diesel blends, Energy 266, 126403. [CrossRef] [Google Scholar]
  • Kumar A.N., Kishore P.S., Raju K.B., Ashok B., Vignesh R., Jeevanantham A.K., Nanthagopal K., Tamilvanan A. (2020) Decanol proportional effect prediction model as additive in palm biodiesel using ANN and RSM technique for diesel engine, Energy 213, 119072. [CrossRef] [Google Scholar]
  • Uslu S., Yesilyurt M.K., Yaman H. (2022) Impact prediction model of acetone at various ignition advance by artificial neural network and response surface methodology techniques for spark ignition engine, Sci. Technol. Energy Transit. 77, 7. [CrossRef] [Google Scholar]
  • Ganji P.R., Raju V.R.K., Rao S.S. (2017) Computational optimization of biodiesel combustion using response surface methodology, Therm. Sci. 21, 465–473. [CrossRef] [Google Scholar]
  • Pandian M., Sivapirakasam S.P., Udayakumar M. (2011) Investigation on the effect of injection system parameters on performance and emission characteristics of a twin cylinder compression ignition direct injection engine fuelled with pongamia biodiesel-diesel blend using response surface methodology, Appl. Energy. 88, 2663–2676. [CrossRef] [Google Scholar]
  • Krishnamoorthi M., Malayalamurthi R., Mohamed Shameer P. (2018) RSM based optimization of performance and emission characteristics of DI compression ignition engine fuelled with diesel/aegle marmelos oil/diethyl ether blends at varying compression ratio, injection pressure and injection timing, Fuel 221, 283–297. [CrossRef] [Google Scholar]
  • Baranitharan P., Ramesh K., Sakthivel R. (2019) Measurement of performance and emission distinctiveness of Aegle marmelos seed cake pyrolysis oil/diesel/TBHQ opus powered in a DI diesel engine using ANN and RSM, Measurement 144, 366–380. [CrossRef] [Google Scholar]
  • Simsek S., Uslu S. (2020) Determination of a diesel engine operating parameters powered with canola, safflower and waste vegetable oil based biodiesel combination using response surface methodology (RSM), Fuel. 270, 117496. [CrossRef] [Google Scholar]
  • Ghanbari M., Mozafari-Vanani L., Dehghani-Soufi M., Jahanbakhshi A. (2021) Effect of alumina nanoparticles as additive with diesel–biodiesel blends on performance and emission characteristic of a six-cylinder diesel engine using response surface methodology (RSM), Energy Convers. Manag. X. 11, 100091. [Google Scholar]
  • Srinidhi C., Madhusudhan A., Channapattana S.V., Gawali S.V., Aithal K. (2021) RSM based parameter optimization of CI engine fuelled with nickel oxide dosed Azadirachta indica methyl ester, Energy 234, 121282. [CrossRef] [Google Scholar]
  • Khan O., Khan M.Z., Bhatt B.K., Alam M.T., Tripathi M. (2022) Multi-objective optimization of diesel engine performance, vibration and emission parameters employing blends of biodiesel, hydrogen and cerium oxide nanoparticles with the aid of response surface methodology approach. 48, 21513–21529. [Google Scholar]
  • Simsek S., Uslu S., Simsek H. (2022) Response surface methodology-based parameter optimization of single-cylinder diesel engine fueled with graphene oxide dosed sesame oil/diesel fuel blend, Energy AI. 10, 100200. [CrossRef] [Google Scholar]
  • Saxena V., Kumar N., Saxena V.K. (2019) Multi-objective optimization of modified nanofluid fuel blends at different TiO2 nanoparticle concentration in diesel engine: Experimental assessment and modeling, Appl. Energy. 248, 330–353. [CrossRef] [Google Scholar]
  • Kalagatur N.K., Karthick K., Allen J.A., Ghosh O.S.N., Chandranayaka S., Gupta V.K., Krishna K., Mudili V. (2017) Application of activated carbon derived from seed shells of Jatropha curcas for decontamination of zearalenone mycotoxin, Front. Pharmacol. 8, 1–13. [CrossRef] [Google Scholar]
  • Yu B.Y., Kwak S. (2010) Assembly of magnetite nanocrystals into spherical mesoporous aggregates with a 3-D wormhole-like pore structure, J. Mater. Chem. 38, 8320–8328. [Google Scholar]
  • Aly Aboud M.F., Alothman Z.A., Habila M.A., Zlotea C., Latroche M., Cuevas F. (2015) Hydrogen storage in pristine and d10-block metal-anchored activated carbon made from local wastes, Energies 8, 3578–3590. [CrossRef] [Google Scholar]
  • Kline F.A., McClintock S. J., (1953) Describing the uncertainties in single sample experiments, Mech. Eng. 75, 3–8. [Google Scholar]
  • Canan A., Calhan R., Ozkaymak M. (2021) Investigation of the effects of different slags as accelerant on anaerobic digestion and methane yield, Biomass Conv. Bioref. 11, 1395–1406. [CrossRef] [Google Scholar]
  • Sathyanarayanan S., Suresh S., Uslu S., Shivaranjani R.S., Chandramohan V.P., Simsek S. (2023) Optimization of gasoline engine emission parameters employing commercial and sucrolite-catalyst coated converter using response surface methodology, Int. J. Environ. Sci. Technol. 20, 1725–1738. [CrossRef] [Google Scholar]
  • Bezerra M.A., Santelli R.E., Oliveira E.P., Villar L.S., Escaleira L.A. (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta 76, 965–77. [CrossRef] [PubMed] [Google Scholar]
  • Helmi M., Tahvildari K., Hemmati A., Azar P.A., Safekordi A. (2022) Converting waste cooking oil into biodiesel using phosphomolybdic acid/clinoptilolite as an innovative green catalyst via electrolysis procedure; optimization by response surface methodology (RSM), Fuel Process. Technol. 225, 107062. [CrossRef] [Google Scholar]
  • Yesilyurt M.K., Uslu S., Yaman H. (2023) Modeling of a port fuel injection spark-ignition engine with different compression ratios using methanol blends with the response surface methodology, Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 237, 936–944. [CrossRef] [Google Scholar]
  • Yaman H., Yesilyurt M.K., Uslu S. (2022) Simultaneous optimization of multiple engine parameters of a 1-heptanol/gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach, Energy 238, 122019. [CrossRef] [Google Scholar]
  • Elkelawy M., Etaiw S.E.-din H., Alm-Eldin Bastawissi H., Ayad M.I., Radwan A.M., Dawood M.M. (2021) Diesel/ biodiesel /silver thiocyanate nanoparticles/hydrogen peroxide blends as new fuel for enhancement of performance, combustion, and Emission characteristics of a diesel engine, Energy. 216, 119284. [CrossRef] [Google Scholar]
  • Ağbulut Ü., Gürel A.E., Sarıdemir S. (2021) Experimental investigation and prediction of performance and emission responses of a CI engine fuelled with different metal-oxide based nanoparticles–diesel blends using different machine learning algorithms, Energy 215, 119076. [CrossRef] [Google Scholar]
  • Hoang A.T. (2021) Combustion behavior, performance and emission characteristics of diesel engine fuelled with biodiesel containing cerium oxide nanoparticles: A review, Fuel Process. Technol. 218, 106840. [CrossRef] [Google Scholar]
  • Bharti A., Debbarma S., Das B. (2023) Effect of hydrogen enrichment and TiO2 nanoparticles on waste cooking palm biodiesel run CRDI engine, Int. J. Hydrogen Energy.. [Google Scholar]
  • Wei J., He C., Lv G., Zhuang Y., Qian Y., Pan S. (2021) The combustion, performance and emissions investigation of a dual-fuel diesel engine using silicon dioxide nanoparticle additives to methanol, Energy 230, 120734. [CrossRef] [Google Scholar]
  • Thiruselvam K., Murugapoopathi S., Ramachandran T., Amesho K.T.T. (2023) Hydrogen-enriched palm biodiesel as a potential alternative fuel for diesel engines: Investigating performance and emission characteristics and mitigation strategies for air pollutants. Int. J. Hydrogen Energy, In Press. [Google Scholar]
  • Venu H., Appavu P. (2020) Al2O3 nano additives blended Polanga biodiesel as a potential alternative fuel for existing unmodified DI diesel engine, Fuel 279, 118518. [CrossRef] [Google Scholar]
  • Polat F. (2022) Experimental evaluation of the impacts of diesel-nanoparticles-waste tire pyrolysis oil ternary blends on the combustion, performance, and emission characteristics of a diesel engine, Process Saf. Environ. Prot. 160, 847–858. [CrossRef] [Google Scholar]
  • Al-Kheraif A.A., Syed A., Elgorban A.M., Divakar D.D., Shanmuganathan R., Brindhadevi K. (2021) Experimental assessment of performance, combustion and emission characteristics of diesel engine fuelled by combined non-edible blends with nanoparticles, Fuel 295, 120590. [CrossRef] [Google Scholar]
  • Liu P., Zhang J., Tang X., Wang C., Sun L., Wang P. (2023) Effects of palm oil biodiesel addition on exhaust emissions and particle physicochemical characteristics of a common-rail diesel engine, Fuel Process. Technol. 241, 107606. [CrossRef] [Google Scholar]
  • Tripathi R., Negi P., Singh Y., Ranjit P.S., Sharma A. (2021) Role of nanoparticles as an additive to the biodiesel for the performance and emission analysis of diesel engine – A review, Mater. Today Proc. 46, 11222–11225. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.