Open Access
Issue |
Sci. Tech. Energ. Transition
Volume 78, 2023
|
|
---|---|---|
Article Number | 24 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.2516/stet/2023022 | |
Published online | 12 September 2023 |
- IMO (2020) Fourth IMO Greenhouse Gas Study – Executive Summary. [Google Scholar]
- Bouman E.A., Lindstad E., Rialland A.I., Strømman A.H. (2017) State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping – A review, Transp. Res. Part D Transp. Environ. 52, 408–421. https://doi.org/10.1016/j.trd.2017.03.022. [CrossRef] [Google Scholar]
- Eyring V. (Sep. 2005) Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050, J. Geophys. Res. 110, D17, D17306. https://doi.org/10.1029/2004JD005620. [CrossRef] [Google Scholar]
- Baldi F., Johnson H., Gabrielii C., Andersson K. (2015) Energy and exergy analysis of ship energy systems – the case study of a chemical tanker, Int. J. Thermodyn. 18, 2, 82. https://doi.org/10.5541/ijot.5000070299. [CrossRef] [Google Scholar]
- Theotokatos G., Livanos G. (2013) Techno-economical analysis of single pressure exhaust gas waste heat recovery systems in marine propulsion plants, Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 227, 2, 83–97. https://doi.org/10.1177/1475090212457894. [Google Scholar]
- Akman M., Ergin S. (2019) An investigation of marine waste heat recovery system based on organic Rankine cycle under various engine operating conditions, Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 233, 2, 586–601. https://doi.org/10.1177/1475090218770947. [Google Scholar]
- Feng Y., Du Z., Shreka M., Zhu Y., Zhou S., Zhang W. (2020) Thermodynamic analysis and performance optimization of the supercritical carbon dioxide Brayton cycle combined with the Kalina cycle for waste heat recovery from a marine low-speed diesel engine, Energy Convers. Manag. 206, 112483. https://doi.org/10.1016/j.enconman.2020.112483. [CrossRef] [Google Scholar]
- Ramesh U., Kalyani T. (2012) Improving the efficiency of marine power plant using Stirling engine in waste heat recovery systems, Int. J. Innov. Res, 1, 10, 449–466. [Google Scholar]
- Benvenuto G., Trucco A., Campora U. (2016) Optimization of waste heat recovery from the exhaust gas of marine diesel engines, Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 230, 83–94. https://doi.org/10.1177/1475090214533320. [Google Scholar]
- Kristiansen N.R., Nielsen H.K. (2010) Potential for usage of thermoelectric generators on ships, J. Electron. Mater. 39, 1746–1749. https://doi.org/10.1007/s11664-010-1189-1. [CrossRef] [Google Scholar]
- Balcombe P., et al. (2019) How to decarbonise international shipping: Options for fuels, technologies and policies, Energy Convers. Manag. 182, 72–88. https://doi.org/10.1016/J.ENCONMAN.2018.12.080. [CrossRef] [Google Scholar]
- Singh D.V., Pedersen E. (2016) A review of waste heat recovery technologies for maritime applications, Energy Convers. Manag. 111, 315–328. https://doi.org/10.1016/j.enconman.2015.12.073. [CrossRef] [Google Scholar]
- Jaworski A.J. (2021) Introduction to Thermoacoustic Technologies. [Online]. Available: https://sites.google.com/site/professorarturjjaworski/thermoacoustics. [Accessed: 03-Jun-2021]. [Google Scholar]
- Garrett S.L. (2004) Resource Letter: TA-1: Thermoacoustic engines and refrigerators, Am. J. Phys. 72, 1, 11–17. https://doi.org/10.1119/1.1621034. [CrossRef] [Google Scholar]
- Swift G.W. (2017) Thermoacoustics: A Unifying perspective for some engines and refrigerators, 2nd edn., Springer International Publishing. [Google Scholar]
- Tiwatane T., Shivprakash B. (2014) Thermoacoustic effect: the power of conversion of sound energy & heat energy: review, Int. J. Res. Technol. Stud. 1, 4. [Google Scholar]
- Gardner D.L., Hower C.Q. (2009) Waste-heat-driven thermoacoustic engine and refrigerator, in Proceedings of Acoustics, 23–25 November 2009, Adelaide, Australia. [Google Scholar]
- Ship & Bunker Rotterdam Bunker Prices – Ship & Bunker. [Online]. Available: https://shipandbunker.com/prices/emea/nwe/nl-rtm-rotterdam#MGO. [Google Scholar]
- de Blok K. (2010) Novel 4-stage traveling wave thermoacoustic power generator, in Proceedings of the ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting and 8th International Conference on Nanochannels, Microchannels, and Minichannels, August 1–5, 2010, Montreal, Canada. [Google Scholar]
- H2020 project – From heat to cold with THEAC-25®, the Thermo Acoustic Energy Converter. https://doi.org/10.3030/836780. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.