Sci. Tech. Energ. Transition
Volume 78, 2023
The Role of Negative Emissions Technologies in 2050 Decarbonation Pathways
Article Number 18
Number of page(s) 8
Published online 21 July 2023
  • Geng A., Yang H., Chen J., Hong Y. (2017) Review of carbon storage function of harvested wood products and the potential of wood substitution in greenhouse gas mitigation, Forest Policy Econ. 85, 192–200. [CrossRef] [Google Scholar]
  • Alcala A., Bridgwater A., Vos J. (2011) Biomass fuelled combined heat and power: situation in the UK and the Netherlands, in: Bridgwater A.V. (Ed), Proceedings of the Bioten Conference on Biomass, Bioenergy and Biofuels 2010, CPL Press. ISBN (Print) 978-1-872691-54-1, pp. 767–777. [Google Scholar]
  • Enagi I.I., Al-Attab K.A., Zainal Z.A. (2018) Liquid biofuels utilization for gas turbines: a review, Renew. Sust. Energ. Rev. 90, 43–55. [CrossRef] [Google Scholar]
  • D’Agosto M., Silva M., Oliveira C., Franca L., Marques L., Murta A., Freitas M. (2015) Evaluating the potential of the use of biodiesel for power generation in Brazil, Renew. Sust. Energ. Rev. 43, 807–817. [CrossRef] [Google Scholar]
  • Uslu A., Faaij A.P.C., Bergman P.C.A. (2008) Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation, Energ. 33, 1206–1223. [CrossRef] [Google Scholar]
  • Uddin M.H., Reza M.T., Lynam J.G., Coronella C.J. (2014) Effects of water recycling in hydrothermal carbonization of Loblolly Pine, Environ. Progr. Sustain. Energy 33, 1309–1315. [Google Scholar]
  • Balat M. (2008) Global trends on the processing of bio-fuels, Int. J. Green Energ. 5, 3, 212–238. [CrossRef] [Google Scholar]
  • Balat M. (2011) An overview of the properties and applications of biomass pyrolysis oils, Energy Sources A: Recovery Util. Environ. Eff. 33, 7, 674–689. [CrossRef] [Google Scholar]
  • Siemons R. (2002) An assessment of biomass gasification and liquefaction (pyrolysis) in view of economic efficiency and sustainability, in 12th European Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection, Amsterdam. [Google Scholar]
  • Schafer H.-J. (1999) Process and apparatus for coating printed circuit boards, United States Patent Application, Washington DC. [Google Scholar]
  • Pecchi M., Baratieri M. (2019) Coupling anaerobic digestion with gasification, pyrolysis or hydrothermal carbonization: A review, Renew. Sust. Energ. Rev. 105, 462–475. [CrossRef] [Google Scholar]
  • Rahdar M.H., Nasiri F., Lee B.A. (2019) Review of numerical modeling and experimental analysis of combustion in moving grate biomass combustors, Energ. Fuels 33, 9367–9402. [CrossRef] [Google Scholar]
  • Cherubini F., Peters G.P., Berntsen T., Stromman A.H., Hertwich E. (2011) CO2 emissions from biomass combustion for bioenergy: Atmospheric decay and contribution to global warming, GCB Bioenerg. 3, 413–426. [CrossRef] [Google Scholar]
  • Heidari M., Garnaik P.P., Dutta A. (2019) The valorization of plastic via thermal means: industrial scale combustion methods, Plastics Energ., William Andrew Publishing, Norwich, NY, USA, pp. 295–312. [Google Scholar]
  • ETKB (2021) Ulusal Enerji Denge Tabloları, (Access date: 03.08.2022) [Google Scholar]
  • Kar T., Keles S. (2016) Environmental impacts of biomass combustion for heating and electricity generation, J. Eng. Res. Appl. Sci. 5, 2, 458–465. [Google Scholar]
  • Kar T., Keles S., Kaygusuz K. (2018) Thermal processing technologies for biomass conversion to clean fuels., J. Eng. Res Appl. Sci. 7, 2, 972–979. ISSN 2147–3471. [Google Scholar]
  • Kovacs H., Szemmelveisz K., Koas T. (2016) Theoretical and experimental metals flow calculations during biomass combustion, Fuel 85, 524–531. [CrossRef] [Google Scholar]
  • Mladenovic M., Paprika M., Marinkovic A. (2018) Denitrification techniques for biomass combustion, Renew. Sust. Energ. Rev. 86, 3350–3364. [CrossRef] [Google Scholar]
  • Abbasi T., Abbasi S.A. (2010) Biomass energy and the environmental impacts associated with its production and utilization, Renew. Sust. Energ. Rev. 14, 919–937. [CrossRef] [Google Scholar]
  • Wu Y., Zhao F., Liu S., Wang L., Qiu L., Alexandrov G., Jothiprakash V. (2018) Bioenergy production and environmental impacts, Geosci. Lett. 5, 14. [CrossRef] [Google Scholar]
  • Obernberger I. (1998) Decentralized biomass combustion: state of the art and future development, Biomass and Bioenergy 14, 33–56. [CrossRef] [Google Scholar]
  • Prochnow A., Heiermann M., Plochl M., Amon T., Hobbs P.J. (2009a) Bioenergy from permanent grassland – a review: 2. Combustion, Bioresource Technol. 100, 4945–4954. [CrossRef] [Google Scholar]
  • Prochnow A., Heiermann M., Plochl M., Linke B., Idler C., Amon T., Hobbs P.J. (2009) Bioenergy from permanent grassland – A review: 1. Biogas, Bioresource Technol. 100, 4931–4944. [CrossRef] [Google Scholar]
  • Appels L., Lauwers J., Degreve J., Helsen L., Lievens B., Willems K., Impe J.W., Dewil R. (2011) Anaerobic digestion in global bio-energy production: potential and research challenges, Renew. Sust. Energ. Rev. 15, 4295–4301. [CrossRef] [Google Scholar]
  • Hensgen F., Richter F., Wachendorf M. (2011) Integrated generation of solid fuel and biogas from green cut material from landscape conservation and private households, Bioresource Technol. 102, 10441–10450. [CrossRef] [Google Scholar]
  • Van Meerbeek K., Appels L., Dewil R., Van Beek J., Bellings L., Liebert K., Muys B., Hermy M. (2015) Energy potential for combustion and anaerobic digestion of biomass from low-input high-diversity systems in conservation areas, GCB Bioenerg. 7, 888–898. [CrossRef] [Google Scholar]
  • Kiesel A., Nunn C., Iqbal Y., Van der Weijde T., Wagner M., Özgüven M., Tarakanov I., Kalinina O., Trindade L.M., Clifton-Brown J., Lewandowski I. (2017) Site-specific management of miscanthus genotypes for combustion and anaerobic digestion: a comparison of energy yields, Front. Plant Sci. 8, 347 10.3389/fpls.2017.00347. [CrossRef] [Google Scholar]
  • Florine S.E., Moore K.J., Fales S.L., White T.A., Lee Burras C. (2006) Yield and composition of herbaceous biomass harvested from naturalized grassland in southern Iowa, Biomass Bioenerg. 30, 522–528. [CrossRef] [Google Scholar]
  • Tonn B., Thumm U., Claupein W. (2010) Semi-natural grassland biomass for combustion: influence of botanical composition, harvest date and site conditions on fuel composition, Grass Forage Sci. 65, 383–397. [CrossRef] [Google Scholar]
  • Gillitzer P., Wyse D., Sheaffer C., Taff S., Lehman C. (2013) Biomass production potential of grasslands in the oak savanna region of Minnesota, USA, BioEnergy Res. 6, 131141. [CrossRef] [Google Scholar]
  • Dunn J.B., Mueller S., Kwon H-y, Wang M.Q. (2013) Land-use change and greenhouse gas emissions from corn and cellulosic ethanol, Biotech. Biofuels 6, 51. [CrossRef] [Google Scholar]
  • Qin Z., Dunn J.B., Kwon H., Mueller S., Wander M.M. (2016) Influence of spatially dependent, modeled soil carbon emission factors on life-cycle greenhouse gas emissions of corn and cellulosic ethanol, GCB Bioenergy 8, 6, 1136–1149. [CrossRef] [Google Scholar]
  • Fu J., Jiang D., Huang Y., Zhuang D., Ji W. (2014) Evaluating the marginal land resources suitable for developing bioenergy in Asia, Adv. Meteor. 4, 1–9. [CrossRef] [Google Scholar]
  • Wang M., Han J., Dunn J.B., Cai H., Elgowainy A. (2012) Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use, Environ. Research Lett. 7, 4. [Google Scholar]
  • Liu T., Huffman T., Kulshreshtha S., McConkey B., Du Y., Green M., Liu J., Shang J., Geng X. (2017) Bioenergy production on marginal land in Canada: potential, economic feasibility, and greenhouse gas emissions impacts, Appl. Energ. 205, 477485. [Google Scholar]
  • Hoekman S.K., Broch A., Liu X. (2018) Environmental implications of higher ethanol production and use in the US: a literature review. Part I-impacts on water, soil, and air quality, Renew. Sust. Energ. Rev. 81, 3140–3158. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.