Open Access
Sci. Tech. Energ. Transition
Volume 78, 2023
Article Number 6
Number of page(s) 14
Published online 10 March 2023
  • Zheng W.K., Wang Y.S., Cui Q.J., Yang Z.Y., Cai W.H., Chen J., Jiang Y.Q. (2018) Sloshing effect on gas-liquid distribution performance at entrance of a plate-fin heat exchanger, Exp. Therm. Fluid Sci. 93, 419–430. [CrossRef] [Google Scholar]
  • Li J.R., Hu H.T., Xie Y., Chen Y.D. (2021) Two-phase flow boiling characteristics in plate-fin channels at offshore conditions, Appl. Therm. Eng. 187, 116595. [CrossRef] [Google Scholar]
  • Zheng W.K., Jiang Y.Q., Cai W.H. (2019) Distribution characteristics of gas-liquid mixture in plate-fin heat exchangers under sloshing conditions, Exp. Therm. Fluid Sci. 101, 115–127. [CrossRef] [Google Scholar]
  • Martins G.S.M., Santiago R.S., Beckedorff L.E., Possamai T.S., Oba R., Oliveira J.L.G., Oliveira A.A.M., Paiva K.V. (2022) Structural analysis of gasketed plate heat exchangers, Int. J. Press. Vessel. Pip. 197, 104634. [CrossRef] [Google Scholar]
  • Cheng X., Yao Y.P., Wu H.Y. (2021) An experimental investigation of flow boiling characteristics in silicon-based groove-wall microchannels with different structural parameters, Int. J. Heat Mass Transf. 168, 120843. [CrossRef] [Google Scholar]
  • Li W., Lin Y.H., Zhou K., Li J.Y., Zhu J. (2019) Local heat transfer of saturated flow boiling in vertical narrow microchannel, Int. J. Therm. Sci. 145, 105996. [CrossRef] [Google Scholar]
  • Li Y.F., Xia G.D., Ma D.D., Yang J.L., Li W. (2019) Experimental investigation of flow boiling characteristics in microchannel with triangular cavities and rectangular fins, Int. J. Heat Mass Transf. 148, 119036. [Google Scholar]
  • Zheng W.K., Jiang Y.Q., Cai W.H., Li F.Z., Wang Y.S. (2021) Numerical investigation on the distribution characteristics of gas-liquid flow at the entrance of LNG plate-fin heat exchangers, Cryogenics 113, 103227. [CrossRef] [Google Scholar]
  • Li Y., Li Y.X., Hu Q.H., Wang W.C., Xie B., Yu X.C. (2015) Sloshing resistance and gas-liquid distribution performance in the entrance of LNG plate-fin heat exchangers, Appl. Therm. Eng. 82, 182–193. [CrossRef] [Google Scholar]
  • Vaisi A., Javaherdeh K., Moosavi R. (2022) Experimental investigation of the thermal performance in a single-component two-phase flow in multistream multi-fluid plate-fin heat exchangers, Int. J. Therm. Sci. 171, 107194. [CrossRef] [Google Scholar]
  • Zhu J.L., Zhang W., Li Y.X., Ji P., Wang W.C. (2019) Experimental study of flow distribution in plate-fin heat exchanger and its influence on natural gas liquefaction performance, Appl. Therm. Eng. 155, 398–417. [CrossRef] [Google Scholar]
  • Jiang W.C., Gong J.M., Tu S.T. (2017) Fatigue life prediction of a stainless steel plate-fin structure using equivalent-homogeneous-solid method, Mater. Des. 32, 10, 4936–4942. [Google Scholar]
  • Ge L., Jiang W.C., Wang Y., Tu S.T. (2018) Creep-fatigue strength design of plate-fin heat exchanger by a homogeneous method, Int. J. Mech. Sci. 146–147, 221–233. [CrossRef] [Google Scholar]
  • Yang X.J., Liu M.H., Liu Z.Y., Du C.W., Li X.G. (2020) Failure analysis of a 304 stainless steel heat exchanger in liquid sulfur recovery units, Eng. Fail. Anal. 116, 104729. [CrossRef] [Google Scholar]
  • Ando M., Hasebe S., Kobayashi S., Kasahara N., Toyoshi A., Ohmae T., Enuma Y. (2014) Thermal transient test and strength evaluation of a tubesheet structure made of Mod. 9Cr-1Mo steel. Part II: creep-fatigue strength evaluation, Nucl. Eng. Des. 275, 422–432. [CrossRef] [Google Scholar]
  • Romanovski V., Hedberg Y.S., Paspelau A., Frantskevich V., Noël J.J., Romanovskaia E. (2021) Corrosion failure of titanium tubes of a heat exchanger for the heating of dissolving lye, Eng. Fail. Anal. 129, 105722. [CrossRef] [Google Scholar]
  • Liu X.F., Zhu H.Y., Yu C.Y., Jin H.Z., Wang C., Ou G.F. (2021) Analysis on the corrosion failure of U-tube heat exchanger in hydrogenation unit, Eng. Fail. Anal. 125, 105448. [CrossRef] [Google Scholar]
  • Pérez-lvarez R., González-Gómez P., Acosta-Iborra A., Santana D. (2021) Thermal stress and fatigue damage of central receiver tubes during their preheating, Appl. Therm. Eng. 195, 117115. [CrossRef] [Google Scholar]
  • Ali M., Ul-Hamid A., Alhems L.M., Saeed A. (2020) Review of common failures in heat exchangers – Part I: mechanical and elevated temperature failures, Eng. Fail. Anal. 109, 104396. [CrossRef] [Google Scholar]
  • Liu L., Ding N., Shi J.B., Xu N., Guo W.M., Wu C.L.M. (2016) Failure analysis of tube-to-tubesheet welded joints in a shell-tube heat exchanger, Case Stud. Eng. Fail. Anal. 7, 32–40. [CrossRef] [Google Scholar]
  • Chen Y.X., Zhang Y.P., Wang D., Hu S., Huang X.H. (2021) Effects of design parameters on fatigue-creep damage of tubular supercritical carbon dioxide power tower receivers, Renew. Energy 176, 520–532. [CrossRef] [Google Scholar]
  • Jiang W.C., Gong J.M., Tu S.T., Fan Q.S. (2009) A comparison of brazed residual stress in plate-fin structure made of different stainless steel, Mater. Des. 30, 23–27. [CrossRef] [Google Scholar]
  • Jiang W.C., Gong J.M., Tu S.T., Chen H. (2008) Effect of geometric conditions on residual stress of brazed stainless steel plate-fin structure, Nucl. Eng. Des. 238, 1497–1502. [CrossRef] [Google Scholar]
  • Jiang W.C., Gong J.M., Chen H., Tu S.T. (2008) The effect of filler metal thickness on residual stress and creep for stainless-steel plate-fin structure, Int. J. Press. Vessel. Pip. 85, 569–574. [CrossRef] [Google Scholar]
  • Gong J.M., Jiang W.C., Fan Q.S., Chen H., Tu S.T. (2009) Finite element modelling of brazed residual stress and its influence factor analysis for stainless steel plate-fin structure, J. Mater. Process. Technol. 209, 1635–1643. [CrossRef] [Google Scholar]
  • Salem G.B., Chapuliot S., Blouin A., Bompard P., Jacquemoud C. (2018) Brittle fracture analysis of dissimilar metal welds between low-alloy steel and stainless steel at low temperatures, Procedia Struct. Integr. 13, 619–624. [CrossRef] [Google Scholar]
  • An Q., An R., Wang C.Q., Wang H. (2021) Ductile-to-brittle transition in fracture behaviors of common solder alloys over a temperature range down to −150 °C, Mater. Today Commun. 29, 102962. [CrossRef] [Google Scholar]
  • Haider P., Freko P., Lochner S., Reiter S., Rehfeldt S., Klein H. (2019) Design of a test rig for the simulation of startup procedures in main heat exchangers of air separation plants, Chem. Eng. Res. Des. 147, 90–97. [CrossRef] [Google Scholar]
  • Ma H.Q., Jia J.W., Ding R.X., Luo X.M., Peng D.G., Hou C.Q., Wang G., Zhang Y.J. (2022) Numerical investigation on fatigue life of aluminum brazing structure with fin-plate-side bar under the low temperature thermal-structure cyclic stress, Eng. Fail. Anal. 131, 105918. [CrossRef] [Google Scholar]
  • Ma H.Q., Cai W.H., Zheng W.K., Chen J., Yao Y., Jiang Y.Q. (2014) Stress characteristics of plate-fin structures in the cool-down process of LNG heat exchanger, J. Nat. Gas Sci. Eng. 21, 1113–1126. [CrossRef] [Google Scholar]
  • Ma H.Q., Cai W.H., Yao Y., Jiang Y.Q. (2016) Investigation on stress characteristics of plate-fin structures in the heat-up process of LNG heat exchanger, J. Nat. Gas Sci. Eng. 30, 256–267. [CrossRef] [MathSciNet] [Google Scholar]
  • Ma H.Q., Chen J., Cai W.H., Shen C., Yao Y., Jiang Y.Q. (2015) The influence of operation parameters on stress of plate-fin structures in LNG heat exchanger, J. Nat. Gas Sci. Eng. 26, 216–228. [CrossRef] [Google Scholar]
  • Ma H.Q., Hou C.Q., Yang R.X., Li C.E., Ma B.S., Ren J.Q., Liu Y.M. (2016) The influence of structure parameters on stress of plate-fin structures in LNG heat exchanger, J. Nat. Gas Sci. Eng. 34, 85–99. [CrossRef] [Google Scholar]
  • Zeng Q.P., Li Y.J., Shi J.X., Zhang G.L., Duan Y.D., Zhang Z.H., Su X.D. (2020) Fatigue life analysis of supercharged boiler based on the design by analysis method, Int. J. Press. Vessel. Pip. 188, 104217. [CrossRef] [Google Scholar]
  • González-Gómez P., Gómez-Hernández J., Briongos J.V., Santana D. (2019) Lifetime analysis of the steam generator of a solar tower plant, Appl. Therm. Eng. 159, 113805. [CrossRef] [Google Scholar]
  • Douellou C., Balandraud X., Duc E. (2022) Fatigue characterization by heat source reconstruction under continuously varying stress amplitude, Int. J. Fatigue 159, 106782. [CrossRef] [Google Scholar]
  • ASME Boiler and Pressure Vessel Code (2019) Section VIII, division 2, alternative rules, rules for construction of pressure vessels, design by analysis approach. [Google Scholar]
  • Martins G.S.M., Silva R.P.P.D., Beckedorff L., Monteiro A.S., Paiva K.V., Oliveira J.L.G. (2020) Fatigue performance evaluation of plate and shell heat exchangers, Int. J. Press. Vessel. Pip. 188, 104237. [CrossRef] [Google Scholar]
  • Rondon A., Guzey S. (2017) Fatigue evaluation of the API specification 12F shop welded flat bottom tanks, Int. J. Press. Vessel. Pip 149, 14–23. [CrossRef] [Google Scholar]
  • Hoseinzadeh S., Heyns P.S. (2020) Thermo-structural fatigue and lifetime analysis of a heat exchanger as a feedwater heater in power plant, Eng. Fail. Anal. 113, 104548. [CrossRef] [Google Scholar]
  • Patil R., Anand S. (2017) Thermo-structural fatigue analysis of shell and tube type heat exchanger, Int. J. Press. Vessel. Pip. 155, 35–42. [CrossRef] [Google Scholar]
  • Hobbacher A.F. (2003) Recommendations for fatigue design of welded joints and components, International Institute of Welding, IW/IIS3. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.