Open Access
Sci. Tech. Energ. Transition
Volume 78, 2023
Article Number 5
Number of page(s) 27
Published online 08 March 2023
  • Sarıkoç S., Örs İ., Ünalan S. (2020) An experimental study on energy-exergy analysis and sustainability index in a diesel engine with direct injection diesel-biodiesel-butanol fuel blends, Fuel 268. [Google Scholar]
  • BP (2019) BP Statistical Review of World Energy, United Kingdom, London. [Google Scholar]
  • Kalam M.A., Masjuki H.H., Jayed M.H., Liaquat A.M. (2011) Emission and performance characteristics of an indirect ignition diesel engine fuelled with waste cooking oil, Energy 36, 1, 397–402. [CrossRef] [Google Scholar]
  • Viswanathan K., Ashok B., Pugazhendhi A. (2020) Comprehensive study of engine characteristics of novel biodiesel from curry leaf (Murraya koenigii) oil in ceramic layered diesel engine, Fuel 280, 118586. [CrossRef] [Google Scholar]
  • Ashok B., Nanthagopal K., Chyuan O.H., Le P.T.K., Raje N., Raj A., Tamilvanan A. (2020) Multi-functional fuel additive as a combustion catalyst for diesel and biodiesel in CI engine characteristics, Fuel 278, 118250. [CrossRef] [Google Scholar]
  • Tamilvanan A., Balamurugan K., Ashok B., Selvakumar P., Dhamotharan S., Bharathiraja M., Karthickeyan V. (2021) Effect of diethyl ether and ethanol as an oxygenated additive on Calophyllum inophyllum biodiesel in CI engine, Environ Sci Pollut Res 28, 26, 33880–33898. [CrossRef] [PubMed] [Google Scholar]
  • Karthickeyan V., Ashok B., Thiyagarajan S., Nanthagopal K., Geo V.E., Dhinesh B. (2020) Comparative analysis on the influence of antioxidants role with Pistacia khinjuk oil biodiesel to reduce emission in diesel engine, Heat Mass Transfer 56, 4, 1275–1292. [CrossRef] [Google Scholar]
  • Papagiannakis R.G., Krishnan S.R., Rakopoulos D.C., Srinivasan K.K., Rakopoulos C.D. (2017) A combined experimental and theoretical study of diesel fuel injection timing and gaseous fuel/diesel mass ratio effects on the performance and emissions of natural gas-diesel HDDI engine operating at various loads, Fuel 202, 675–687. [CrossRef] [Google Scholar]
  • Geng L., Xiao Y., Li S., Chen H., Chen X. (2021) Effects of injection timing and rail pressure on particulate size-number distribution of a common rail DI engine fueled with Fischer-Tropsch diesel synthesized from coal, J. Energy Inst. 95, 219–230. [CrossRef] [Google Scholar]
  • Demirbas A. (2009) Progress and recent trends in biodiesel fuels, Energy Convers. Manag. 50, 1, 14–34. [CrossRef] [Google Scholar]
  • Atabani A.E., Silitonga A.S., Badruddin I.A., Mahlia T.M.I., Masjuki H., Mekhilef S. (2012) A comprehensive review on biodiesel as an alternative energy resource and its characteristics, Renewable Sustainable Energy Rev. 16, 4, 2070–2093. [CrossRef] [Google Scholar]
  • Thangaraj B., Solomon P.R. (2020) Scope of biodiesel from oils of woody plants: A review, Clean Energy 4, 2, 89–106. [CrossRef] [Google Scholar]
  • Rashid U., Ibrahim M., Yasin S., Yunus R., Taufiq-Yap Y.H., Knothe G. (2013) Biodiesel from Citrus reticulata (mandarin orange) seed oil, a potential non-food feedstock, Industrial Crops Products 45, 355–359. [CrossRef] [Google Scholar]
  • Carolan M.S. (2009) Environmental review: the cost and benefits of biofuels: A review of recent peer-reviewed research and a sociological look ahead, Environmental Practice 11, 1, 17–24. [CrossRef] [Google Scholar]
  • Gui M.M., Lee K.T., Bhatia S. (2008) Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock, Energy 33, 11, 1646–1653. [CrossRef] [Google Scholar]
  • Leizer C., Ribnicky D., Poulev A., Dushenkov S., Raskin I. (2000) The composition of hemp seed oil and its potential as an important source of nutrition, J. Nutraceuticals funct. Med. Foods 2, 4, 35–53. [CrossRef] [Google Scholar]
  • Wei M., Li S., Liu J., Guo G., Sun Z., Xiao H. (2017) Effects of injection timing on combustion and emissions in a diesel engine fueled with 2, 5-dimethylfuran-diesel blends, Fuel 192, 208–217. [CrossRef] [Google Scholar]
  • Khalife E., Tabatabaei M., Demirbas A., Aghbashlo M. (2017) Impacts of additives on performance and emission characteristics of diesel engines during steady state operation, Prog. Energy Combust. Sci. 59, 32–78. [CrossRef] [Google Scholar]
  • Kumar B.R., Saravanan S. (2016) Use of higher alcohol biofuels in diesel engines: a review, Renewable Sustainable Energy Rev. 60, 84–115. [CrossRef] [Google Scholar]
  • Togbe C., Dagaut P., Mzé-Ahmed A., Diévart P., Halter F., Foucher F. (2010) Experimental and detailed kinetic modeling study of 1-hexanol oxidation in a pressurized jet-stirred reactor and a combustion bomb, Energy Fuels 24, 11, 5859–5875. [CrossRef] [Google Scholar]
  • De Poures M.V., Sathiyagnanam A.P., Rana D., Kumar B.R., Saravanan S. (2017) 1-hexanol as a sustainable biofuel in DI diesel engines and its effect on combustion and emissions under the influence of injection timing and Exhaust Gas Recirculation (EGR), Appl. Therm. Eng. 113, 1505–1513. [CrossRef] [Google Scholar]
  • Nour M., Sun Z., El-Seesy A.I., Li X. (2021) Experimental evaluation of the performance and emissions of a direct-injection compression-ignition engine fueled with N-hexanol–diesel blends, Fuel 302, 121144. [CrossRef] [Google Scholar]
  • Sathiyagnanam A.P., Saravanan C.G., Gopalakrishnan M. (2010) Hexanol-ethanol diesel blends on DI-diesel engine to study the combustion and emission, Proceedings of the World Congress on Engineering, 2, 1–5 [Google Scholar]
  • Raju V.D., Kumar K.K., Kishore P.S. (2016) Engine performance and emission characteristics of a direct injection diesel engine fuelled with 1-hexanol as a fuel additive in Mahua seed oil biodiesel blends, Int. J. Thermal Environ. Eng. 13, 2, 121–127. [Google Scholar]
  • Karlapudi S., Gardas R.L., Sivakumar K. (2013) FT-IR Studies on Excess Thermodynamic Properties of Binary Liquid Mixtures O-Chlorotoluene with 1-Propanol, 1-Butanol, 1-Pentanol, 1-Hexanol and 1-Heptanol At Different Temperatures, the Journal of Chemical Thermodynamics 67, 203–209. [CrossRef] [Google Scholar]
  • Devarajan Y., Munuswamy D.B., Radhakrishnan S., Mahalingam A., Nagappan B. (2019) Experimental testing and evaluation of neat biodiesel and heptanol blends in diesel engine, J. Test. Eval. 47, 2, 987–997. [Google Scholar]
  • Yesilyurt M.K. (2020) A detailed investigation on the performance, combustion, and exhaust emission characteristics of a diesel engine running on the blend of diesel fuel, biodiesel and 1-heptanol (C7 alcohol) as a next-generation higher alcohol, Fuel 275, 117893. [CrossRef] [Google Scholar]
  • Marcheschi R.J., Li H., Zhang K., Noey E.L., Kim S., Chaubey A., Houk K.N., Liao J.C. (2012) A synthetic recursive “+1” pathway for carbon chain elongation, ACS Chem. Biol. 7, 4, 689–697. [CrossRef] [PubMed] [Google Scholar]
  • Immethun C.M., Henson W.R., Wang X., Nielsen D.R., Moon T.S. (2016) Engineering central metabolism for production of higher alcohol-based biofuels, in: Biotechnology for Biofuel Production and Optimization, Elsevier, pp. 1–34. [Google Scholar]
  • Sarathy S.M., Oßwald P., Hansen N., Kohse-Höinghaus K. (2014) Alcohol combustion chemistry, Prog. Energy Combust. Sci. 44, 40–102. [CrossRef] [Google Scholar]
  • Dogan B., Cakmak A., Yesilyurt M.K., Erol D. (2020) Investigation on 1-heptanol as an oxygenated additive with diesel fuel for compression-ignition engine applications: an approach in terms of energy, exergy, exergoeconomic, enviroeconomic, and sustainability analyses, Fuel 275, 117973. [CrossRef] [Google Scholar]
  • Nour M., Nada S., Li X. (2022) Experimental study on the combustion performance of a stationary CIDI engine fueled with 1-heptanol-diesel mixtures, Fuel 312, 122902. [CrossRef] [Google Scholar]
  • El-Seesy A.I., He Z., Kosaka H. (2021) Combustion and emission characteristics of a common rail diesel engine run with n-heptanol-methyl oleate mixtures, Energy 214, 118972. [CrossRef] [Google Scholar]
  • Pandian A.K., Munuswamy D.B., Radhakrishanan S., Devarajan Y., Ramakrishnan R.B.B., Nagappan B. (2018) Emission and performance analysis of a diesel engine burning cashew nut shell oil bio diesel mixed with hexanol, Pet. Sci. 15, 1, 176–184. [CrossRef] [Google Scholar]
  • John C.B., Raja S.A. (2020) Analysis of combustion, emission and performance attributes of hemp biodiesel on a compression ignition engine, World Rev. Sci. Technol. Sustain. Develop. 16, 2, 169–183. [CrossRef] [Google Scholar]
  • Sridhar R., Jeevahan J., Chandrasekaran M. (2020) Effect of the addition of 1-pentanol on engine performance and emission characteristics of diesel and biodiesel fuelled single cylinder diesel engine, Int. J. Ambient Energy 41, 1, 58–63. [CrossRef] [Google Scholar]
  • Pardo C., Pabon J., Fonseca Vigoya M. (2021) Analysis of the characteristics of combustion, emissions, and energy efficiency of blends of heptanol with pure diesel fuel in compression ignition engine, Int. J. Energy Convers. (IRECON) 9, 5, 221–229. [CrossRef] [Google Scholar]
  • Yesilyurt M.K., Cesur C. (2020) Biodiesel synthesis from Styrax officinalis L. seed oil as a novel and potential non-edible feedstock: A parametric optimization study through the Taguchi technique, Fuel 265, 117025. [CrossRef] [Google Scholar]
  • Priyadarshi D., Paul K.K. (2019) Optimisation of biodiesel production using Taguchi model, Waste Biomass Valorization 10, 6, 1547–1559. [CrossRef] [Google Scholar]
  • Yilbaşi Z., Yesilyurt M.K., Arslan M. (2021) The production of methyl ester from industrial grade hemp (Cannabis Sativa L.) seed oil: A perspective of turkey – the optimization study using the Taguchi method, Biomass Convers. Biorefinery 1–21. [Google Scholar]
  • Yesilyurt M.K., Aydin M., Yilbasi Z., Arslan M. (2020) Investigation on the structural effects of the addition of alcohols having various chain lengths into the vegetable oil-biodiesel-diesel fuel blends: an attempt for improving the performance, combustion, and exhaust emission characteristics of a compression ignition engine, Fuel 269, 117455. [CrossRef] [Google Scholar]
  • Dhawane S.H., Kumar T., Halder G. (2016) Biodiesel Synthesis from Hevea brasiliensis oil employing carbon supported heterogeneous catalyst: Optimization by Taguchi method, Renewable Energy 89, 506–514. [CrossRef] [Google Scholar]
  • Campos-Fernandez J., Arnal J.M., Gomez J., Lacalle N., Dorado M.P. (2013) Performance tests of a diesel engine fueled with pentanol/diesel fuel blends, Fuel 107, 866–872. [CrossRef] [Google Scholar]
  • Nour M., Attia A.M., Nada S.A. (2019) Combustion, performance and emission analysis of diesel engine fuelled by higher alcohols (butanol, octanol and heptanol)/diesel blends, Energy Convers. Manage. 185, 313–329. [CrossRef] [Google Scholar]
  • Çakmak A., Yeşilyurt M.K., Erol D., Doğan B. (2022) The experimental investigation on the impact of N-octanol in the compression-ignition engine operating with biodiesel/diesel fuel blends: Exergy, exergoeconomic, environmental analyses, J. Therm. Anal. Calorim. 147, 20, 11231–11259. [CrossRef] [Google Scholar]
  • Van Gerpen J.H., Peterson C.L., Goering C.E. (2007) Biodiesel: An alternative fuel for compression ignition engines, American Society of Agricultural and Biological Engineers, Kentucky, USA, pp. 1–22. [Google Scholar]
  • Yeşilyurt M., Arslan M., Eryılmaz T. (2018) Biyodizel-Dizel Yakıt Karışımlarına Etanol Katılmasının Performans, Yanma ve Emisyon Karakteristiklerine Etkilerinin Deneysel İncelenmesi, Isı Bilimi ve Tekniği Dergisi 38, 2, 129–150. [Google Scholar]
  • Yesilyurt M.K., Cakmak A. (2021) An Extensive Investigation of Utilization of a C8 type long-chain alcohol as a sustainable next-generation biofuel and diesel fuel blends in a CI Engine – the effects of alcohol infusion ratio on the performance, exhaust emissions, and combustion characteristics, Fuel 305, 121453. [CrossRef] [Google Scholar]
  • Santhosh K., Kumar G.N., Sanjay P.V. (2020) Experimental analysis of performance and emission characteristics of CRDI diesel engine fueled with 1-pentanol/diesel blends with EGR technique, Fuel 267, 121453. [Google Scholar]
  • Lamani V.T., Yadav A.K., Gottekere K.N. (2017) Performance, emission, and combustion characteristics of twin-cylinder common rail diesel engine fuelled with butanol-diesel blends, Environ. Sci. Pollut. Res. 24, 29, 23351–23362. [CrossRef] [PubMed] [Google Scholar]
  • Verma P., Dwivedi G., Behura A.K., Patel D.K., Verma T.N., Pugazhendhi A. (2020) Experimental investigation of diesel engine fuelled with different alkyl esters of Karanja Oil, Fuel 275, 117920. [CrossRef] [Google Scholar]
  • Holman J.P. (2012) Experimental methods for engineers. [Google Scholar]
  • Ramesh A., Ashok B., Nanthagopal K., Pathy M.R., Tambare A., Mali P., Phuke P., Patil S., Subbarao R. (2019) Influence of hexanol as additive with Calophyllum inophyllum biodiesel for CI engine applications, Fuel 249, 472–485. [CrossRef] [Google Scholar]
  • Fattah I.R., Kalam M.A., Masjuki H.H., Wakil M.A. (2014) Biodiesel production, characterization, engine performance, and emission characteristics of Malaysian Alexandrian Laurel Oil, RSC Adv. 4, 34, 17787–17796. [CrossRef] [Google Scholar]
  • Paul A., Bose P.K., Panua R., Debroy D. (2015) Study of performance and emission characteristics of a single cylinder CI engine using diethyl ether and ethanol blends, J. Energy Inst. 88, 1, 1–10. [Google Scholar]
  • Yesilyurt M.K., Aydin M. (2020) Experimental investigation on the performance, combustion and exhaust emission characteristics of a compression-ignition engine fueled with cottonseed oil biodiesel/diethyl ether/diesel fuel blends, Energy Conver. Manage. 205, 112355. [CrossRef] [Google Scholar]
  • Rajendran R., Gomez J.P.U., Javed M.M., Subbiah G. (2020,) Reduction of NOx emissions with low viscous biofuel using exhaust gas recirculation technique, AIP Conf. Proc., Vol. 2311, December, AIP Publishing LLC., p. 020026. [CrossRef] [Google Scholar]
  • Sundar R.C., Saravanan G. (2011) Influence of hexanol-diesel blends on constant speed diesel engine, Thermal Sci. 15, 4, 1215–1222. [CrossRef] [Google Scholar]
  • Suhaimi H., Adam A., Mrwan A.G., Abdullah Z., Othman M.F., Kamaruzzaman M.K., Hagos F.Y. (2018) Analysis of combustion characteristics, engine performances and emissions of long-chain alcohol-diesel fuel blends, Fuel 220, 682–691. [CrossRef] [Google Scholar]
  • Shrivastava P., Verma T.N., Pugazhendhi A. (2019) An experimental evaluation of engine performance and emission characteristics of CI engine operated with Roselle and Karanja biodiesel, Fuel 254, 115652. [CrossRef] [Google Scholar]
  • Atmanli A. (2016) Comparative analyses of diesel-waste oil biodiesel and propanol, N-Butanol Or 1-pentanol blends in a diesel engine, Fuel 176, 209–215. [CrossRef] [Google Scholar]
  • Kumar A.N., Ashok B., Nanthagopal K., Ong H.C., Geca M.J., Victor J., Vignesh R., Jeevanantham A.K., Kannan P.S., Kishore P.S. (2020) Experimental analysis of higher alcohol-based ternary biodiesel blends in CI engine parameters through multivariate and desirability approaches, Biomass Convers. Biorefinery 12, 1525–1540. [Google Scholar]
  • Nanthagopal K., Ashok B., Saravanan B., Patel D., Sudarshan B., Ramasamy R.A. (2018) An assessment on the effects of 1-pentanol and 1-butanol as additives with Calophyllum inophyllum biodiesel, Energy Convers. Manage. 158, 70–80. [CrossRef] [Google Scholar]
  • Ashok B., Nanthagopal K., Anand V., Aravind K.M., Jeevanantham A.K., Balusamy S. (2019) Effects of n-octanol as a fuel blend with biodiesel on diesel engine characteristics, Fuel 235, 363–373. [CrossRef] [Google Scholar]
  • Ashok B., Nanthagopal K., Saravanan B., Azad K., Patel D., Sudarshan B., Ramasamy R.A. (2019) Study on isobutanol and Calophyllum inophyllum biodiesel as a partial replacement in CI engine applications, Fuel 235, 984–994. [CrossRef] [Google Scholar]
  • Emiroğlu A.O., Şen M. (2018) Combustion, performance and exhaust emission characterizations of a diesel engine operating with a ternary blend (alcohol-biodiesel-diesel fuel), Appl. Thermal Eng. 133, 371–380. [CrossRef] [Google Scholar]
  • Appavu P., Venu H. (2019) Quaternary blends of diesel/biodiesel/vegetable oil/pentanol as a potential alternative feedstock for existing unmodified diesel engine: Performance, combustion and emission characteristics, Energy 186, 115856. [CrossRef] [Google Scholar]
  • Saravanan S., Nagarajan G., Rao G.L.N., Sampath S. (2010) Combustion characteristics of a stationary diesel engine fuelled with a blend of crude rice bran oil methyl ester and diesel, Energy 35, 1, 94–100. [CrossRef] [MathSciNet] [Google Scholar]
  • Murugapoopathi S., Vasudevan D. (2019) Performance, combustion and emission characteristics on VCR multi-fuel engine running on methyl esters of rubber seed oil, J. Therm. Anal. Calorim. 138, 2, 1329–1343. [CrossRef] [Google Scholar]
  • Alagumalai A. (2015) Combustion characteristics of lemongrass (Cymbopogon flexuosus) oil in a partial premixed charge compression ignition engine, Alex. Eng. J. 54, 3, 405–413. [CrossRef] [Google Scholar]
  • Sanli H., Canakci M., Alptekin E., Turkcan A., Ozsezen A.N. (2015) Effects of waste frying oil based methyl and ethyl ester biodiesel fuels on the performance, combustion and emission characteristics of a DI diesel engine, Fuel 159, 179–187. [CrossRef] [Google Scholar]
  • Canakci M. (2007) Combustion characteristics of a turbocharged DI compression ignition engine fueled with petroleum diesel fuels and biodiesel, Bioresour. Technol. 98, 6, 1167–1175. [CrossRef] [Google Scholar]
  • Dhar A., Agarwal A.K. (2014) Performance, emissions and combustion characteristics of Karanja biodiesel in a transportation engine, Fuel 119, 70–80. [CrossRef] [Google Scholar]
  • Santhosh K., Kumar G.N. (2020) Impact of 1-Hexanol/diesel blends on combustion, performance and emission characteristics of CRDI CI mini truck engine under the influence of EGR, Energy Convers. Manage. 217, 113003. [CrossRef] [Google Scholar]
  • Santhosh K., Kumar G.N. (2021) Effect of injection time on combustion, performance and emission characteristics of direct injection CI engine fuelled with equi-volume of 1-hexanol/diesel blends, Energy 214, 118984. [CrossRef] [Google Scholar]
  • Atmanlı A., Ileri E., Yüksel B. (2014) Experimental investigation of engine performance and exhaust emissions of a diesel engine fueled with diesel–N-butanol–vegetable oil blends, Energy Convers. Manage. 81, 312–321. [CrossRef] [Google Scholar]
  • Yilmaz N., Atmanli A., Vigil F.M. (2018) Quaternary blends of diesel, biodiesel, higher alcohols and vegetable oil in a compression ignition engine, Fuel 212, 462–469. [CrossRef] [Google Scholar]
  • Yilmaz N., Morton B. (2011) Comparative characteristics of compression ignited engines operating on biodiesel produced from waste vegetable oil, Biomass Bioenergy 35, 5, 2194–2199. [CrossRef] [Google Scholar]
  • Sharon H., Ram P.J.S., Fernando K.J., Murali S., Muthusamy R. (2013) Fueling a stationary direct injection diesel engine with diesel-used palm oil-butanol blends – an experimental study, Energy Convers. Manage. 73, 95–105. [CrossRef] [Google Scholar]
  • Li L., Wang J., Wang Z., Xiao J. (2015) Combustion and emission characteristics of diesel engine fueled with diesel/biodiesel/pentanol fuel blends, Fuel 156, 211–218. [CrossRef] [Google Scholar]
  • Imdadul H.K., Masjuki H.H., Kalam M.A., Zulkifli N.W.M., Alabdulkarem A., Rashed M.M., Teoh Y.H., How H.G. (2016) Higher alcohol–biodiesel–diesel blends: An approach for improving the performance, emission, and combustion of a light-duty diesel engine, Energy Convers. Manage. 111, 174–185. [CrossRef] [Google Scholar]
  • Pullen J., Saeed K. (2014) Factors affecting biodiesel engine performance and exhaust emissions–Part II: Experimental study, Energy 72, 17–34. [CrossRef] [Google Scholar]
  • Babu D., Anand R. (2017) Effect of biodiesel-diesel-N-pentanol and biodiesel-diesel-N-hexanol blends on diesel engine emission and combustion characteristics, Energy 133, 761–776. [CrossRef] [Google Scholar]
  • Fattah I.R., Masjuki H.H., Liaquat A.M., Ramli R., Kalam M.A., Riazuddin V.N. (2013) Impact of various biodiesel fuels obtained from edible and non-edible oils on engine exhaust gas and noise emissions, Renewable Sustainable Energy Rev. 18, 552–567. [CrossRef] [Google Scholar]
  • Pulkrabek W.W. (2004) İçten Yanmalı Motorlar Mühendislik Temelleri (1. Baskı), in: Yaşar H., Büyükkaya E., Soyhan H.S., Taymaz İ., Engineering Fundamentals of the Internal Combustion Engine, İzmir Güven Bookstore, İzmir, pp. 299–307. [Google Scholar]
  • Wei L., Cheung C.S., Huang Z. (2014) Effect of N-pentanol addition on the combustion, performance and emission characteristics of a direct-injection diesel engine, Energy 70, 172–180. [CrossRef] [Google Scholar]
  • Emaish H., Abualnaja K.M., Kandil E.E., Abdelsalam N.R. (2021) Evaluation of the performance and gas emissions of a tractor diesel engine using blended fuel diesel and biodiesel to determine the best loading stages, Sci. Rep. 11, 1, 1–12. [NASA ADS] [CrossRef] [Google Scholar]
  • Anderson A., Devarajan Y., Nagappan B. (2018) Effect of injection parameters on the reduction of NOx emission in neat bio-diesel fuelled diesel engine, Energy Sources A: Recovery Util. Environ. Eff. 40, 2, 186–192. [CrossRef] [Google Scholar]
  • Mohammadi P., Nikbakht A.M., Tabatabaei M., Farhadi K., Mohebbi A. (2012) Experimental investigation of performance and emission characteristics of DI diesel engine fueled with polymer waste dissolved in biodiesel-blended diesel fuel, Energy 46, 1, 596–605. [CrossRef] [Google Scholar]
  • Venu H., Madhavan V. (2017) Influence of Diethyl Ether (DEE) addition in Ethanol-Biodiesel-Diesel (EBD) and Methanol-Biodiesel-Diesel (MBD) blends in a diesel engine, Fuel 189, 377–390. [CrossRef] [Google Scholar]
  • Ashok B., Nanthagopal K., Darla S., Chyuan O.H., Ramesh A., Jacob A., Sahil G., Thiyagarajan S., Geo V.E. (2019) Comparative assessment of hexanol and decanol as oxygenated additives with Calophyllum inophyllum biodiesel, Energy 173, 494–510. [CrossRef] [Google Scholar]
  • Ramalingam S., Mahalakshmi N.V. (2020) Influence of Moringa oleifera biodiesel–diesel–hexanol and biodiesel–diesel–ethanol blends on compression ignition engine performance. Combustion and Emission Characteristics, RSC Adv. 10, 8, 4274–4285. [CrossRef] [Google Scholar]
  • Işık M.Z. (2021) Comparative experimental investigation on the effects of heavy alcohols-safflower biodiesel blends on combustion, performance and emissions in a power generator diesel engine, Appl. Thermal Eng. 184, 116142. [CrossRef] [Google Scholar]
  • Nour M., Elseesy A.I., Attia A., Li X., Nada S. (2021) Adding N-butanol, N-heptanol, and N-octanol to improve vaporization, combustion, and emission characteristics of diesel/used frying oil biodiesel blends in DICI engine, Environ. Prog. Sustain. Energy 40, 3, E13549. [CrossRef] [Google Scholar]
  • Swarna S., Swamy M.T., Divakara T.R., Krishnamurthy K.N., Shashidhar S. (2022) Experimental assessment of ternary fuel blends of diesel, hybrid biodiesel and alcohol in naturally aspirated CI engine, Int. J. Environ. Sci. Technol. 19, 9, 8523–8554. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.