Open Access
Sci. Tech. Energ. Transition
Volume 78, 2023
Article Number 7
Number of page(s) 16
Published online 16 March 2023
  • Ellabban O., Abu-Rub H. (2016) Smart grid customers’ acceptance and engagement: an overview, Renew. Sust. Energ. Rev. 65, 1285–1298. [CrossRef] [Google Scholar]
  • Levi V., Williamson G., King J., Terzija V. (2020) Development of GB distribution networks with low carbon technologies and smart solutions: scenarios and results, Int. J. Electr. Power Energy Syst. 119, 105832. [CrossRef] [Google Scholar]
  • Sultana B., Mustafa M.W., Sultana U., Bhatti A.R. (2016) Review on reliability improvement and power loss reduction in distribution system via network reconfiguration, Renew. Sust. Energ. Rev. 66, 297–310. [CrossRef] [Google Scholar]
  • Wilson D., Yu J., Al-Ashwal N., Heimisson B., Terzija V. (2019) Measuring effective area inertia to determine fast-acting frequency response requirements, Int. J. Electr. Power Energy Syst. 113, 1–8. [CrossRef] [MathSciNet] [Google Scholar]
  • Jani D.B. (2020) Performance analysis of hybrid cooling systems using artificial neural network, Glob. J. Energy Technol. Res. Updates 7, 12–20. [CrossRef] [Google Scholar]
  • Gielen D., Boshell F., Saygin D., Bazilian M.D., Wagner N., Gorini R. (2019) The role of renewable energy in the global energy transformation, Energy Strategy Rev. 24, 38–50. [CrossRef] [Google Scholar]
  • Javadi A., Hamadi A., Ndtoungou A., Al-Haddad K. (2016) Power quality enhancement of smart households using a multilevel-THSeAF with a PR controller, IEEE Trans. Smart Grid 8, 1, 465–474. [Google Scholar]
  • Kraiczy M., Stetz T., Braun M. (2017) Parallel operation of transformers with on load tap changer and photovoltaic systems with reactive power control, IEEE Trans. Smart Grid 9, 6, 6419–6428. [Google Scholar]
  • Shaukat N., Khan B., Ali S.M., Mehmood C.A., Khan J., Farid U., Majid M., Anwar S.M., Jawad M., Ullah Z. (2018) A survey on electric vehicle transportation within smart grid system, Renew. Sust. Energ. Rev. 81, 1329–1349. [CrossRef] [Google Scholar]
  • Verma A.K., Singh B., Shahani D.T., Jain C. (2016) Grid-interfaced solar photovoltaic smart building with bidirectional power flow between grid and electric vehicle with improved power quality, Electr. Power Compon. Syst. 44, 5, 480–494. [CrossRef] [Google Scholar]
  • Tavakoli A., Saha S., Arif M.T., Haque M.E., Mendis N., Oo A.M. (2020) Impacts of grid integration of solar PV and electric vehicle on grid stability, power quality and energy economics: a review, IET Energy Syst. Integr. 2, 3, 243–260. [CrossRef] [Google Scholar]
  • Amjadi Z., Williamson S.S. (2013) Digital control of a bidirectional DC/DC switched capacitor converter for hybrid electric vehicle energy storage system applications, IEEE Trans. Smart Grid 5, 1, 158–166. [Google Scholar]
  • Naderi Y., Hosseini S.H., Zadeh S.G., Mohammadi-Ivatloo B., Vasquez J.C., Guerrero J.M. (2018) An overview of power quality enhancement techniques applied to distributed generation in electrical distribution networks, Renew. Sust. Energ. Rev. 93, 201–214. [CrossRef] [Google Scholar]
  • Enose N. (2014) Advanced technologies implementation framework for a smart grid, J. Clean Energy Technol. 2, 1, 88–94. [CrossRef] [Google Scholar]
  • Gandoman F.H., Ahmadi A., Sharaf A.M., Siano P., Pou J., Hredzak B., Agelidis V.G. (2018) Review of FACTS technologies and applications for power quality in smart grids with renewable energy systems, Renew. Sust. Energ. Rev. 82, 502–514. [CrossRef] [Google Scholar]
  • Singh S., Singh B., Bhuvaneswari G., Bist V. (2015) Power factor corrected zeta converter based improved power quality switched mode power supply, IEEE Trans. Ind. Electron. 62, 9, 5422–5433. [CrossRef] [Google Scholar]
  • Agarwal R.K., Hussain I., Singh B. (2017) Application of LMS-based NN structure for power quality enhancement in a distribution network under abnormal conditions, IEEE Trans. Neural Netw. Learn. Syst. 29, 5, 1598–1607. [Google Scholar]
  • Mortezaei A., Simões M.G., Savaghebi M., Guerrero J.M., Al-Durra A. (2016) Cooperative control of multi-master–slave islanded microgrid with power quality enhancement based on conservative power theory, IEEE Trans. Smart Grid 9, 4, 2964–2975. [Google Scholar]
  • Luo Y., Zhu T., Wan S., Zhang S., Li K. (2016) Optimal charging scheduling for large-scale EV (electric vehicle) deployment based on the interaction of the smart-grid and intelligent-transport systems, Energy 97, 359–368. [CrossRef] [Google Scholar]
  • Mohtashami S., Pudjianto D., Strbac G. (2016) Strategic distribution network planning with smart grid technologies, IEEE Trans. Smart Grid 8, 6, 2656–2664. [Google Scholar]
  • Balasundar C., Sundarabalan C.K., Sharma J., Srinath N.S., Guerrero J.M. (2021) Design of power quality enhanced sustainable bidirectional electric vehicle charging station in distribution grid, Sustain. Cities Soc. 74, 103242. [CrossRef] [Google Scholar]
  • Gayathri M.N. (2021) A smart bidirectional power interface between smart grid and electric vehicle, in: Intelligent paradigms for smart grid and renewable energy systems, Springer, Singapore, pp. 103–137. [CrossRef] [Google Scholar]
  • Brinkel N.B.G., Gerritsma M.K., AlSkaif T.A., Lampropoulos I., van Voorden A.M., Fidder H.A., van Sark W.G.J.H.M. (2020) Impact of rapid PV fluctuations on power quality in the low-voltage grid and mitigation strategies using electric vehicles, Int. J. Electr. Power Energy Syst. 118, 105741. [CrossRef] [Google Scholar]
  • Lara J., Masisi L., Hernandez C., Arjona M.A., Chandra A. (2021) Novel five-level ANPC bidirectional converter for power quality enhancement during G2V/V2G operation of cascaded EV charger, Energies 14, 9, 2650. [CrossRef] [Google Scholar]
  • Irfan M.M., Rangarajan S.S., Collins E.R., Senjyu T. (2021) Enhancing the power quality of the grid interactive solar photovoltaic-electric vehicle system, World Elect. Veh. J. 12, 3, 98. [CrossRef] [Google Scholar]
  • Kavin K.S., Subha Karuvelam P. (2021) PV-based grid interactive PMBLDC electric vehicle with high gain interleaved DC-DC SEPIC Converter, IETE J. Res. 1–15. [CrossRef] [Google Scholar]
  • Bajaj M., Singh A.K. (2021) A global power quality index for assessment in distributed energy systems connected to a harmonically polluted network, Energy Sources A Recovery Util. Environ. Eff. 1–27. [Google Scholar]
  • Suganya S., Charles Raja S., Venkatesh P. (2017) Smart management of distinct plug-in hybrid electric vehicle charging stations considering mobility pattern and site characteristics, Int. J. Energy Res. 41, 14, 2268–2281. [CrossRef] [Google Scholar]
  • Li Y., Ni Z., Zhao T., Zhong T., Liu Y., Wu L., Zhao Y. (2020) Supply function game based energy management between electric vehicle charging stations and electricity distribution system considering quality of service, IEEE Trans. Ind. Appl. 56, 5, 5932–5943. [CrossRef] [Google Scholar]
  • Suganya S., Raja S.C., Venkatesh P. (2017) Simultaneous coordination of distinct plug-in Hybrid Electric Vehicle charging stations: A modified Particle Swarm Optimization approach, Energy 138, 92–102. [CrossRef] [Google Scholar]
  • Gampa S.R., Jasthi K., Goli P., Das D., Bansal R.C. (2020) Grasshopper optimization algorithm based two stage fuzzy multiobjectiveapproach for optimum sizing and placement of distributed generations, shunt capacitors and electric vehicle charging stations, J. Energy Storage 27, 101117. [CrossRef] [Google Scholar]
  • Awasthi A., Venkitusamy K., Padmanaban S., Selvamuthukumaran R., Blaabjerg F., Singh A.K. (2017) Optimal planning of electric vehicle charging station at the distribution system using hybrid optimization algorithm, Energy 133, 70–78. [CrossRef] [Google Scholar]
  • Liu J.P., Zhang T.X., Zhu J., Ma T.N. (2018) Allocation optimization of electric vehicle charging station (EVCS) considering with charging satisfaction and distributed renewables integration, Energy 164, 560–574. [CrossRef] [Google Scholar]
  • Mozafar M.R., Moradi M.H., Amini M.H. (2017) A simultaneous approach for optimal allocation of renewable energy sources and electric vehicle charging stations in smart grids based on improved GA-PSO algorithm, Sustain. Cities Soc. 32, 627–637. [CrossRef] [Google Scholar]
  • Pflaum P., Alamir M., Lamoudi M.Y. (2017) Probabilistic energy management strategy for EV charging stations using randomized algorithms, IEEE Trans. Control Syst. Technol. 26, 3, 1099–1106. [Google Scholar]
  • Shakerighadi B., Anvari-Moghaddam A., Ebrahimzadeh E., Blaabjerg F., Bak C.L. (2018) A hierarchical game theoretical approach for energy management of electric vehicles and charging stations in smart grids, IEEE Access 6, 67223–67234. [CrossRef] [Google Scholar]
  • Zhang H., Hu Z., Xu Z., Song Y. (2016) Evaluation of achievable vehicle-to-grid capacity using aggregate PEV model, IEEE Trans. Power Syst. 32, 1, 784–794. [Google Scholar]
  • Tushar M.H.K., Zeineddine A.W., Assi C. (2017) Demand-side management by regulating charging and discharging of the EV, ESS, and utilizing renewable energy, IEEE Trans. Ind. Inform. 14, 1, 117–126. [Google Scholar]
  • Chaudhari K., Ukil A., Kumar K.N., Manandhar U., Kollimalla S.K. (2017) Hybrid optimization for economic deployment of ESS in PV-integrated EV charging stations, IEEE Trans. Ind. Inform. 14, 1, 106–116. [Google Scholar]
  • Yan Q., Zhang B., Kezunovic M. (2018) Optimized operational cost reduction for an EV charging station integrated with battery energy storage and PV generation, IEEE Trans. Smart Grid 10, 2, 2096–2106. [Google Scholar]
  • Shojaabadi S., Abapour S., Abapour M., Nahavandi A. (2016) Simultaneous planning of plug-in hybrid electric vehicle charging stations and wind power generation in distribution networks considering uncertainties, Renew. Energy 99, 237–252. [CrossRef] [Google Scholar]
  • Li D., Zouma A., Liao J.T., Yang H.T. (2020) An energy management strategy with renewable energy and energy storage system for a large electric vehicle charging station, Etransportation 6, 100076. [CrossRef] [Google Scholar]
  • Tovilović D.M., Rajaković N.L. (2015) The simultaneous impact of photovoltaic systems and plug-in electric vehicles on the daily load and voltage profiles and the harmonic voltage distortions in urban distribution systems, Renew. Energy 76, 454–464. [CrossRef] [Google Scholar]
  • Rekik M., Krichen L. (2021) Photovoltaic and plug-in electric vehicle for smart grid power quality enhancement, Arab. J. Sci. Eng. 46, 2, 1481–1497. [CrossRef] [Google Scholar]
  • Rekik M., Abdelkafi A., Krichen L. (2015) A micro-grid ensuring multi-objective control strategy of a power electrical system for quality improvement, Energy 88, 351–363. [CrossRef] [Google Scholar]
  • Jaber A.S., Abdulbari H.A., Shalash N.A., Abdalla A.N. (2020) Garra Rufa-inspired optimization technique, Int. J. Intell. Syst. 35, 11, 1831–1856. [CrossRef] [Google Scholar]
  • Fetouh T., Elsayed A.M. (2020) Optimal control and operation of fully automated distribution networks using improved tunicate swarm intelligent algorithm, IEEE Access 8, 129689–129708. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.