Open Access
Issue |
Sci. Tech. Energ. Transition
Volume 78, 2023
|
|
---|---|---|
Article Number | 13 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.2516/stet/2023008 | |
Published online | 05 May 2023 |
- EPA.gov (2019) Global Greenhouse Gas Emissions Data. Retrieved July 11, 2019, from https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data. [Google Scholar]
- Ministry of Power, Government of India (2019). https://powermin.nic.in/en/content/power-sector-glance-all-india (accessed July 11, 2019). [Google Scholar]
- Sureshkumar U., Manoharan P.S., Ramalakshmi A.P.S. (2012) Economic cost analysis of hybrid renewable energy system using HOMER, IEEE-International Conf, in: International Conf. Adv. Eng. Sci. Manag. ICAESM-2012, March 30, 31, 2012, Nagapattinam, Tamil Nadu, India, pp. 94–99. [Google Scholar]
- Srivastava R., Giri V.K. (2016) Optimization of hybrid renewable resources using HOMER, Int. J. Renew. Energy Res. 6, 157–163. [Google Scholar]
- Kim H., Bae J., Baek S., Nam D., Cho H., Chang H.J. (2017) Comparative analysis between the government micro-grid plan and computer simulation results based on real data: The practical case for a South Korean Island, Sustainability 9, 197. https://doi.org/10.3390/su9020197. [CrossRef] [Google Scholar]
- IRENA (2012) Renewable energy technologies: Cost analysis series, Int. Renew. Energy Agency. [Google Scholar]
- Baitule A.S., Sudhakar K. (2017) Solar powered green campus: A simulation study, Int. J. Low-Carbon Technol. 12, 400–410. https://doi.org/10.1093/ijlct/ctx011. [CrossRef] [Google Scholar]
- Shiroudi A., Rashidi R., Gharehpetian G.B., Mousavifar S.A., Akbari Foroud A. (2012) Case study: Simulation and optimization of photovoltaic-wind-battery hybrid energy system in Taleghan-Iran using homer software, J. Renew. Sustain. Energy 4, 053111. https://doi.org/10.1063/1.4754440. [CrossRef] [Google Scholar]
- Pradhan A.K., Mohanty M.K., Kar S.K. (2017) Techno-economic evaluation of stand-alone hybrid renewable energy system for remote village using HOMER-pro software, Int. J. Appl. Power Eng. 6, 73. https://doi.org/10.11591/ijape.v6.i2.pp73-88. [Google Scholar]
- Okedu K.E., Uhunmwangho R. (2014) Optimization of renewable energy efficiency using HOMER, Int. J. Renew. Energy Res. 4, 421–427. [Google Scholar]
- Ramli M.S., Wahid S.S.A., Hassan K.K. (2017) A comparison of renewable energy technologies using two simulation softwares: HOMER and RETScreen, AIP Conf. Proc. 1875, 030013. https://doi.org/10.1063/1.4998384. [CrossRef] [Google Scholar]
- M Elhassa Z.A., Moh Zain M.F., Sopian K., Awadalla A. (2011) Design of hybrid power system of renewable energy for domestic used in Khartoum, J. Appl. Sci. 11, 2270–2275. [CrossRef] [Google Scholar]
- Tanim M.M., Chowdhury N.A., Rahman M.M., Ferdous J. (2014) Design of a photovoltaic-biogas hybrid power generation system for Bangladeshi remote area using HOMER software, in: Proc. 2014 3rd Int. Conf. Dev. Renew. Energy Technol. ICDRET 2014, 29–31 May 2014, Dhaka, Bangladesh, pp. 3–7. https://doi.org/10.1109/icdret.2014.6861694. [Google Scholar]
- Ringkjøb H.K., Haugan P.M., Solbrekke I.M. (2018) A review of modelling tools for energy and electricity systems with large shares of variable renewables, Renew. Sustain. Energy Rev. 96, 440–459. https://doi.org/10.1016/j.rser.2018.08.002. [CrossRef] [Google Scholar]
- Rumbayan M., Nagasaka K. (2018) Techno economical study of PV-diesel power system for a remote island in Indonesia: A case study of Miangas Island, IOP Conf. Ser. Earth Environ. Sci. 150, 012024. https://doi.org/10.1088/1755-1315/150/1/012024. [CrossRef] [Google Scholar]
- Park E., Kwon S.J., del Pobil A.P. (2019) Can large educational institutes become free from grid systems? Determination of hybrid renewable energy systems in Thailand, Appl. Sci. 9, 2319. https://doi.org/10.3390/app9112319. [CrossRef] [Google Scholar]
- Ani V.A., Abubakar B. (2015) Feasibility analysis and simulation of integrated renewable energy system for power generation: A hypothetical study of rural health clinic, J. Energy 2015, 1–7. https://doi.org/10.1155/2015/802036. [CrossRef] [Google Scholar]
- Jung T.Y., Kim D., Lim S., Moon J. (2019) Evaluation criteria of independent hybrid energy systems, Int. J. Low-Carbon Technol. 14, 493–499. https://doi.org/10.1093/ijlct/ctz036. [CrossRef] [Google Scholar]
- Oyedepo S.O., Uwoghiren T., Babalola P.O., Nwanya S.C., Kilanko O., Leramo R.O., Aworinde A.K., Adekeye T., Oyebanji J.A., Abidakun O.A. (2019) Assessment of decentralized electricity production from Hybrid Renewable Energy Sources for sustainable energy development in Nigeria, Open Eng. 9, 72–89. https://doi.org/10.1515/eng-2019-0009. [CrossRef] [Google Scholar]
- Al Asfar J., Atieh A., Al-Mbaideen R. (2019) Techno-economic analysis of a microgrid hybrid renewable energy system in Jordan, J. Eur. Des Syst. Autom. 52, 415–423. https://doi.org/10.18280/jesa.520412. [Google Scholar]
- Al-Ammar E.A., Malik N.H., Usman M. (2011) Application of using Hybrid Renewable Energy in Saudi Arabia, Eng. Technol. Appl. Sci. Res. 1, 84–89. https://doi.org/10.48084/etasr.33. [CrossRef] [Google Scholar]
- Sawle Y., Gupta S.C., Bohre A.K. (2016) PV-wind hybrid system: A review with case study, Cogent Eng. 3, 1189305. https://doi.org/10.1080/23311916.2016.1189305. [CrossRef] [Google Scholar]
- Kasaeian A., Razmjoo A., Shirmohammadi R., Pourfayaz F., Sumper A. (2020) Deployment of a stand-alone hybrid renewable energy system in coastal areas as a reliable energy source, Environ. Prog. Sustain. Energy 39, 1–20. https://doi.org/10.1002/ep.13354. [CrossRef] [PubMed] [Google Scholar]
- Aderemi B.A., Daniel Chowdhury S.P., Olwal T.O., Abu-Mahfouz A.M. (2018) Techno-economic feasibility of hybrid solar photovoltaic and battery energy storage power system for a mobile cellular base station in Soshanguve, South Africa, Energies 11, 1572. https://doi.org/10.3390/en11061572. [CrossRef] [Google Scholar]
- Oladeji A.S., Balogun O.S., Aliyu S.O. (2018) Use of standalone photovoltaic system for office building: the case study of national centre for hydropower research and development, Nigeria, Niger. J. Technol. 36, 1208. https://doi.org/10.4314/njt.v36i4.30. [CrossRef] [Google Scholar]
- Okonkwo E.C., Okwose C.F., Abbasoglu S. (2017) Techno-economic analysis of the potential utilization of a hybrid PV-wind turbine system for commercial buildings in Jordan, Int. J. Renew. Energy Res. 7, 908–914. [Google Scholar]
- Elkadeem M.R., Wang S., Sharshir S.W., Atia E.G. (2019) Feasibility analysis and techno-economic design of grid-isolated hybrid renewable energy system for electrification of agriculture and irrigation area: A case study in Dongola, Sudan, Energy Convers. Manag. 196, 1453–1478. https://doi.org/10.1016/j.enconman.2019.06.085. [CrossRef] [Google Scholar]
- Diemuodeke E.O., Addo A., Oko C.O.C., Mulugetta Y., Ojapah M.M. (2019) Optimal mapping of hybrid renewable energy systems for locations using multi-criteria decision-making algorithm, Renew. Energy. 134, 461–477. https://doi.org/10.1016/j.renene.2018.11.055. [CrossRef] [Google Scholar]
- Kartite J., Cherkaoui M. (2019) Study of the different structures of hybrid systems in renewable energies: A review, Energy Procedia 157, 323–330. https://doi.org/10.1016/j.egypro.2018.11.197. [CrossRef] [Google Scholar]
- Abdin Z., Mérida W. (2019) Hybrid energy systems for off-grid power supply and hydrogen production based on renewable energy: A techno-economic analysis, Energy Convers. Manag. 196, 1068–1079. https://doi.org/10.1016/j.enconman.2019.06.068. [CrossRef] [Google Scholar]
- Odou O.D.T., Bhandari R., Adamou R. (2020) Hybrid off-grid renewable power system for sustainable rural electrification in Benin, Renew. Energy. 145, 1266–1279. https://doi.org/10.1016/j.renene.2019.06.032. [CrossRef] [Google Scholar]
- Salisu S., Mustafa M.W., Olatomiwa L., Mohammed O.O. (2019) Assessment of technical and economic feasibility for a hybrid PV-wind-diesel-battery energy system in a remote community of north central Nigeria, Alexandria Eng. J. 58, 1103–1118. https://doi.org/10.1016/j.aej.2019.09.013. [CrossRef] [Google Scholar]
- Shezan S.K.A., Das N., Mahmudul H. (2017) Techno-economic analysis of a smart-grid hybrid renewable energy system for Brisbane of Australia, Energy Procedia 110, 340–345. https://doi.org/10.1016/j.egypro.2017.03.150. [CrossRef] [Google Scholar]
- Ahmad J., Imran M., Khalid A., Iqbal W., Ashraf S.R., Adnan M., Ali S.F., Khokhar K.S. (2018) Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar Kahar, Energy 148, 208–234. https://doi.org/10.1016/j.energy.2018.01.133. [CrossRef] [Google Scholar]
- Shafiullah G.M. (2016) Hybrid Renewable Energy Integration (HREI) system for subtropical climate in Central Queensland, Australia, Renew. Energy. 96, 1034–1053. https://doi.org/10.1016/j.renene.2016.04.101. [CrossRef] [Google Scholar]
- Meena N.K., Kumar A., Singh A.R., Swarnkar A., Gupta N., Niazi K.R., Kumar P., Bansal R.C. (2019) Optimal planning of hybrid energy conversion systems for annual energy cost minimization in Indian residential buildings, Energy Procedia 158, 2979–2985. https://doi.org/10.1016/j.egypro.2019.01.965. [CrossRef] [Google Scholar]
- Ramli M.A.M., Hiendro A., Twaha S. (2015) Economic analysis of PV/diesel hybrid system with flywheel energy storage, Renew. Energy. 78, 398–405. https://doi.org/10.1016/j.renene.2015.01.026. [CrossRef] [Google Scholar]
- Taghavifar H., Zomorodian Z.S. (2021) Techno-economic viability of on grid micro-hybrid PV/wind/Gen system for an educational building in Iran, Renew. Sustain. Energy Rev. 143, 110877. https://doi.org/10.1016/j.rser.2021.110877. [CrossRef] [Google Scholar]
- Esfilar R., Bagheri M., Golestani B. (2021) Technoeconomic feasibility review of hybrid waste to energy system in the campus: A case study for the University of Victoria, Renew. Sustain. Energy Rev. 146, 111190. https://doi.org/10.1016/j.rser.2021.111190. [CrossRef] [Google Scholar]
- Nesamalar J.J.D., Suruthi S., Raja S.C., Tamilarasu K. (2021) Techno-economic analysis of both on-grid and off-grid hybrid energy system with sensitivity analysis for an educational institution, Energy Convers. Manag. 239, 114188. https://doi.org/10.1016/j.enconman.2021.114188. [CrossRef] [Google Scholar]
- CSTEP & SELCO Foundation (2016) 24x7 Power for All: Strategies for Karnataka, (CSTEP-Report-2016-01). [Google Scholar]
- Deshmukh R., Callaway D., Abhyankar N., Phadke A. (2017) Cost and value of wind and solar in india’s electric system in 2030, in: Proceedings of the 1st International Conference on Large-Sale Integration of Renewable Energies in India, New Delhi, India, pp. 6–8. [Google Scholar]
- Worldweatheronline (n.d.) https://www.worldweatheronline.com/lang/en-in/manipal-weather-averages/karnataka/in.aspx (accessed July 22, 2019). [Google Scholar]
- Igniss Energy (2019). Available: https://www.igniss.com/calorific-value-waste (accessed July 10, 2019). [Google Scholar]
- Spiegel J.E. (n.d.) YCC. https://www.yaleclimateconnections.org/2018/03/company-turns-food-waste-into-electricity/. (accessed July 11, 2019). [Google Scholar]
- BERC (n.d.). Available: https://www.biomasscenter.org/policy-statements/FSE-Policy.pdf. (accessed July 11, 2019). [Google Scholar]
- Sustainable Solid waste management (n.d.) http://swmindia.blogspot.com/2012/01/municipal-solid-waste-msw-generation-in.html (accessed July 11, 2019). [Google Scholar]
- Rezaei M., Ghobadian B., Samadi S.H., Karimi S. (2018) Electric power generation from municipal solid waste: A techno-economical assessment under different scenarios in Iran, Energy 152, 46–56. https://doi.org/10.1016/j.energy.2017.10.109. [CrossRef] [Google Scholar]
- Waste to Energy for Integrated Waste Management in India (n.d.) WMM. https://waste-management-world.com/a/waste-to-energy-for-integrated-waste-management-in-india (accessed July 11, 2019). [Google Scholar]
- Murphy J.D., McKeogh E. (2004) Technical, economic and environmental analysis of energy production from municipal solid waste, Renew. Energy. 29, 1043–1057. https://doi.org/10.1016/j.renene.2003.12.002. [CrossRef] [Google Scholar]
- Milosavljević D., Kevkić T., Jovanović S. (2022) Review and validation of photovoltaic solar simulation tools/software based on case study, Open Phys. 20, 1, 431–451. https://doi.org/10.1515/phys-2022-0042. [CrossRef] [Google Scholar]
- IEA (2018) Fuel share of CO2 emissions from fuel combustion, IEA, Paris. https://www.iea.org/data-and-statistics/charts/fuel-share-of-co2-emissions-from-fuel-combustion-2018. [Google Scholar]
- Stauffer B., Spuhler D. (n.d.) SSWM. https://sswm.info/water-nutrient-cycle/wastewater-treatment/hardwares/sludge-treatment/incineration-%28large-scale%29. (accessed July 22, 2019). [Google Scholar]
- Hall P.J., Bain E.J. (2008) Energy-storage technologies and electricity, Energy Policy 36, 12, 4352–4355. [CrossRef] [Google Scholar]
- FRED Economic data (n.d.) Int. Monet. Fund.. https://fred.stlouisfed.org/series/INTDSRINM193N (accessed July 11, 2019). [Google Scholar]
- Ministry of Statistics and Programme Implementation, Tradingeconomics (n.d.) https://tradingeconomics.com/india/inflation-cpi (accessed July 11, 2019). [Google Scholar]
- Richardson L. (n.d.) Energysage. https://news.energysage.com/how-long-do-solar-panels-last/. (accessed July 22, 2019). [Google Scholar]
- Bachao B. (n.d.) https://www.bijlibachao.com/solar/solar-panel-cell-cost-price-list-in-india.html (accessed July 17, 2019). [Google Scholar]
- Bishoyi D., Sudhakar K. (2017) Modeling and performance simulation of 100 MW LFR based solar thermal power plant in Udaipur India, Resour. Technol. 3, 365–377. https://doi.org/10.1016/j.reffit.2017.02.002. [Google Scholar]
- Dawoud S.M., Lin X., Okba M.I. (2018) Hybrid renewable microgrid optimization techniques: A review, Renew. Sustain. Energy Rev. 82, 2039–2052. https://doi.org/10.1016/j.rser.2017.08.007. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.