Open Access
Sci. Tech. Energ. Transition
Volume 78, 2023
Article Number 1
Number of page(s) 9
Published online 30 January 2023
  • Barenblatt G.I., Zheltov Yu.P., Kochina I.N. (1960) Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech. 24, 5, 1286–1303. [CrossRef] [Google Scholar]
  • Beier R.A. (1994) Pressure-Transient Model for a Vertically Fractured Well in a Fractal Reservoir, SPE Formation Evaluation 9, 2, 122–128. [CrossRef] [Google Scholar]
  • Belayneh M., Masihi M., Matthäi S.K., King P.R. (2006) Prediction of vein connectivity using the percolation approach: model test with field data, J. Geophys. Eng. 33, 219–229. [CrossRef] [Google Scholar]
  • Bisdom K., Bertotti G., Nick H.M. (2016) The impact of different aperture distribution models and critical stress criteria on equivalent permeability in fractured rocks, J. Geophys. Res. Solid Earth 121, 5, 2169–9356. [Google Scholar]
  • Cacas M.C., Daniel J.M., Letouzey J. (2001) Nested geological modelling of naturally fractured reservoirs, Pet. Geosci. 7, S43–S52. [CrossRef] [Google Scholar]
  • Caine J.S., Evans J.P., Forster C.B. (1996) Fault zone architecture and permeability structure, Geology 24, 11, 1025–1028. [Google Scholar]
  • Caputo M. (1967) Linear Models of Dissipation whose Q is almost Frequency Independent-II, Geophys. J. R. Astron. Soc. 13, 5, 529–539. [CrossRef] [Google Scholar]
  • Carslaw H.S., Jaeger J.C. (1959) Conduction of heat in solids, 2nd edn., Clarendon Press, Oxford, p. 510. [Google Scholar]
  • Chu W., Pandya N., Flumerfelt R.W., Chen C. (2017) Rate-Transient analysis based on power-law behavior for Permian wells, in Paper SPE-187180-MS, presented at the SPE Annual Technical Conference and Exhibition, 9–11 October, San Antonio, Texas, USA, Society of Petroleum Engineers. [Google Scholar]
  • Chu W., Scott K., Flumerfelt R.W., Chen C. (2018) A new technique for quantifying pressure interference in fractured horizontal shale wells, in Paper SPE-191407-MS, presented at the Annual Technical Conference and Exhibition, 24–28 September, Dallas, TX, USA. [Google Scholar]
  • Cooper H.H., Jacob C.E. (1946) A generalized graphical method for evaluating formation constants and summarizing well-field history, Trans. AGU 27, 526–534. [CrossRef] [Google Scholar]
  • Cortis A., Knudby C. (2006) A continuous time random walk approach to transient flow in heterogeneous porous media, LBNL-59885, Water Resour. Res. 42, W10201. [Google Scholar]
  • Doe T.W. (1991) Fractional dimension analysis of constant-pressure well tests, Paper SPE-22702-MS, presented at the SPE Annual Technical Conference and Exhibition, 6–9 October, Dallas, Texas. [Google Scholar]
  • Evans J.P. (1988) Deformation mechanisms in granitic rocks at shallow crustal levels, J. Struct. Geol. 10, 5, 437–443. [Google Scholar]
  • Feller W. (1971) An introduction to probability theory and its applications. II, 2nd edn., Wiley, New York, p. 8–10, 50. [Google Scholar]
  • Fu L., Milliken K.L., Sharp J.M. Jr (1994) Porosity and permeability variations in fractured and liesegang-banded Breathitt sandstones (Middle Pennsylvanian), eastern Kentucky: diagenetic controls and implications for modeling dual-porosity systems, J. Hydrol. 154, 1–4, 351–381. [CrossRef] [Google Scholar]
  • Haggerty R., McKenna S.A., Meigs L.C. (2000) On the late-time behavior for tracer test breakthrough curves, Water Resour. Res. 36, 12, 3467–3479. [CrossRef] [Google Scholar]
  • Henry B.I., Langlands T.A.M., Straka P. (2010) An introduction to fractional diffusion, in: Dewar R.L., Detering F. (eds), Complex Physical, biophysical and Econophysical Systems, World Scientific, Hackensack, NJ, p. 400. [Google Scholar]
  • Hilfer R., Anton L. (1995) Fractional master equations and fractal time random walks, Phys. Rev. E 51, 2, R848–R851. [Google Scholar]
  • Ingle T., Greenwood H., Wilkins M., Almasoodi M., Haustveit K. (2020) Well to well interference: Quantifying connectivity and understanding how much is too much – A STACK case study, in Paper presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Virtual. [Google Scholar]
  • Jourde H., Pistrea S., Perrochet P., Droguea C. (2002) Origin of fractional flow dimension to a partially penetrating well in stratified fractured reservoirs. New results based on the study of synthetic fracture networks, Adv. Water Resour. 25, 4, 371–387. [Google Scholar]
  • Kang P.K., Le Borgne T., Dentz M., Bour O., Juanes R. (2014) Impact of velocity correlation and distribution on transport in fractured media: Field evidence and theoretical model, Water Resour. Res. 51, 2, 940–959. [Google Scholar]
  • Kazemi H. (1969) Pressure transient analysis of naturally fractured reservoirs with uniform fracture distribution, SPE J. 9, 4, 451–462. [Google Scholar]
  • Kenkre V.M., Montroll E.W., Shlesinger M.F. (1973) Generalized master equations for continuous-time random walks, J. Stat. Phys. 9, 1, 45–50. [Google Scholar]
  • Knudby C., Carrera J., Fogg G.E. (2002) An empirical method for the evaluation of the equivalent conductivity of low-permeable matrices with high-permeable inclusions, in: Findikakis A.N. (ed.), Proceedings of the International groundwater symposium, bridging the gap between measurement and modeling in heterogeneous media, Lawrence Berkeley National Laboratory, Berkeley, CA. [Google Scholar]
  • Luchko Y. (2011) Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation, J. Math. Anal. Appl. 374, 2, 538–548. [CrossRef] [MathSciNet] [Google Scholar]
  • Metzler R., Glockle W.G., Nonnenmacher T.F. (1994) Fractional model equation for anomalous diffusion, Phys. A 211, 1, 13–24. [CrossRef] [Google Scholar]
  • Metzler R., Klafter J. (2000) The random walks guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep. 339, 1, 1–77. [CrossRef] [Google Scholar]
  • Mitchell T.M., Faulkner D.R. (2009) The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault system, northern Chile, J. Struct. Geol. 31, 8, 802–816. [Google Scholar]
  • Montroll E.W., Weiss G.H. (1965) Random walks on lattices II, J. Math. Phys. 6, 167–181. [Google Scholar]
  • Noetinger B., Estebenet T. (2000) Up-scaling of double porosity fractured media using continuous-time random walks methods, Transp. Porous Med. 39, 3, 315–337. [Google Scholar]
  • Noetinger B., Estebenet T., Landereau P. (2001) A direct determination of the transient exchange term of fractured media using a continuous time random walk method, Transp. Porous Med. 44, 3, 539–557. [CrossRef] [MathSciNet] [Google Scholar]
  • Noetinger B., Roubinet D., Russian A., Le Borgne T., Delay F., Dentz M., Gouze P. (2016) Random walk methods for modeling hydrodynamic transport in porous and fractured media from pore to reservoir scale, Transp. Porous Med. 115, 2, 345–385. [CrossRef] [MathSciNet] [Google Scholar]
  • Oberhettinger F., Badii L. (1973) Tables of Laplace transforms, Springer Verlag, Berlin, p. 268. [Google Scholar]
  • Raghavan R. (2004) A review of applications to constrain pumping test responses to improve on geological description and uncertainty, Rev. Geophys. 42, RG4001. [Google Scholar]
  • Raghavan R. (2012) Fractional diffusion: performance of fractured wells, J. Pet. Sci. Eng. 92, 167–173. [CrossRef] [Google Scholar]
  • Raghavan R., Chen C. (2017a) Rate Decline, power laws, and subdiffusion in fractured rocks, SPE Res. Eval. Eng. 20, 3, 738–751. [CrossRef] [Google Scholar]
  • Raghavan R., Chen C. (2017b) Addressing the influence of a heterogeneous matrix on well performance in fractured rocks, Transp. Porous Med. 117, 1, 69–102. [CrossRef] [MathSciNet] [Google Scholar]
  • Raghavan R., Chen C. (2018) A conceptual structure to evaluate wells producing fractured rocks of the Permian Basin, in Paper SPE-191484-MS, Presented at the Annual Technical Conference and Exhibition, 24–28 September, Dallas, TX, USA. [Google Scholar]
  • Raghavan R., Chen C.C. (2020) Subdiffusive flow in a composite medium with a communicating (absorbing) interface, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 75, 26. [CrossRef] [Google Scholar]
  • Reiss L.H. (1980) The reservoir engineering aspects of fractured formations, Editions TECHNIP, p. 108. [Google Scholar]
  • Savage H.M., Brodsky E.E. (2011) Collateral damage: Evolution with displacement of fracture distribution and secondary fault strands in fault damage zones, J. Geophys. Res. 116, B03405. [Google Scholar]
  • Schneider W.R., Wyss W. (1989) Fractional diffusion and wave equations, J. Math. Phys. 30, 134. [Google Scholar]
  • Scholz C.H., Dawers N.H., Yu J.Z., Anders M.H., Cowie P.A. (1993) Fault growth and fault scaling laws: Preliminary results, J. Geophys. Res. 98, B12, 21951–21961. [Google Scholar]
  • Sharp J.M. Jr, Kreisel I., Milliken K.L., Mace R.E., Robinson N.I. (1996) Fracture skin properties and effects on solute transport: Geotechnical and environmental implications, in Rock Mechanics, Tools and Techniques, M. Aubertin, F. Hassam, H. Mitri (eds), Balkema, Rotterdam. [Google Scholar]
  • Stehfest H. (1970a) Algorithm 368: Numerical inversion of Laplace transforms [D5], Commun. ACM 13, 1, 47–49. [Google Scholar]
  • Stehfest H. (1970b) Remark on algorithm 368: Numerical inversion of Laplace transforms, Commun. ACM 13, 10, 624. [Google Scholar]
  • Streltsova-Adams T.D. (1978) Fluid flow in naturally fractured reservoirs, in Proceedings, Second International Well Testing Symposium, Berkeley, California, October, pp. 71–77. [Google Scholar]
  • Silva O., Carrera J., Dentz M., Kumar S., Alcolea A., Willmann M. (2009) A general real-time formulation for multi-rate mass transfer problems, Hydrol. Earth Syst. Sci. 13, 1399–1411. [CrossRef] [Google Scholar]
  • Suzuki A., Hashida T., Li K., Horne R.N. (2016) Experimental tests of truncated diffusion in fault damage zones, Water Resour. Res. 52, 8578–8589. [Google Scholar]
  • Theis C.V. (1935) The relationship between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage, Eos Trans. AGU 2, 519–524. [CrossRef] [Google Scholar]
  • Warren J.E., Root P.J. (1963) The behavior of naturally fractured reservoirs, Soc. Pet. Eng. J. 3, 3, 245–255. [Google Scholar]
  • Xia Y., Zhang Y., Green C.T., Fogg G.E. (2021) Time-Fractional Flow Equations (t-FFEs) to upscale transient groundwater flow characterized by temporally non-Darcian flow due to medium heterogeneity, Water Resour. Res. 57, e2020WR029554. [Google Scholar]
  • Zhang Y., Zhou D.B., Yin M.S., Sun H.G., Wei W., Li S.Y., Zheng C.M. (2020) Nonlocal transport models for capturing solute transport in one-dimensional sand columns: Model review, applicability, limitations and improvement, Hydrol. Process. 34, 5104–5122. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.