Open Access
Issue |
Sci. Tech. Energ. Transition
Volume 77, 2022
|
|
---|---|---|
Article Number | 22 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.2516/stet/2022019 | |
Published online | 20 December 2022 |
- Xu Q., Xiaolei H., Wang P., Xiao J., Pengfei T., Wen C., Lee M.Y. (2016) A decentralized dynamic power-sharing strategy for hybrid energy storage system in autonomous DC microgrid, IEEE Trans. Ind. Electron. 64, 7, 5930–5941. [Google Scholar]
- Yi Z., Dong W., Etemadi A.H. (2017) A unified control and power management scheme for PV-battery-based hybrid microgrids for grid-connected and islanded modes, IEEE Trans. Smart Grid 9, 6, 5975–5985. [Google Scholar]
- Fakenham H., Lu D., Francois B. (2010) Power control design of a battery charger in a hybrid active PV generator for load-following applications, IEEE Trans. Ind. Electron. 58, 1, 85–94. [Google Scholar]
- Tammara N.R., Mishra M.K., Srinivas S. (2015) Dynamic energy management of renewable grid integrated hybrid energy storage system, IEEE Trans. Ind. Electron. 62, 12, 7728–7737. [CrossRef] [Google Scholar]
- Xiao J., Wang P., Setyawan L. (2015) Hierarchical control of hybrid energy storage system in DC microgrids, IEEE Trans. Ind. Electron. 62, 8, 4915–4924. [CrossRef] [Google Scholar]
- Yang P., Yu M., Wu Q., Hatziargyriou N., Xia Y., Wei W. (2019) Decentralized bidirectional voltage supporting control for multi-mode hybrid AC/DC microgrid, IEEE Trans. Smart Grid 11, 3, 2615–2626. [Google Scholar]
- Garcia P., Arboleya P., Mohamed B., Vega A.A.C. (2016) Implementation of a hybrid distributed/centralized real-time monitoring system for a DC/AC microgrid with energy storage capabilities, IEEE Trans. Ind. Inform. 12, 5, 1900–1909. [CrossRef] [Google Scholar]
- Pena-Alzola R., Liserre M., Blaabjerg F., Ordonez M., Yang Y. (2014) LCL-filter design for robust active damping in grid-connected converters, IEEE Trans. Ind. Inform. 10, 4, 2192–2203. [CrossRef] [Google Scholar]
- Photovoltaics D.G., Storage E. (2005) IEEE Standard Conformance Test Procedures for Equipment Interconnecting Distributed Resources with Electric Power Systems. IEEE Std 1547.1-2005. IEEE Standards Coordinating Committee 21. [Google Scholar]
- Wang C., Li X., Guo L., Li Y.W. (2014) A nonlinear-disturbance-observer-based DC-bus voltage control for a hybrid AC/DC microgrid, IEEE Trans. Power Electron. 29, 11, 6162–6177. [CrossRef] [Google Scholar]
- Liu X., Wang P., Loh P.C. (2011) A hybrid AC/DC microgrid and coordination control, IEEE Trans. Smart Grid 2, 2, 278–286. [CrossRef] [Google Scholar]
- Issa W.R., El Khateb A.H., Abusara M.A., Mallick T.K. (2017) Control strategy for uninterrupted microgrid mode transfer during unintentional islanding scenarios, IEEE Trans. Ind. Electron. 65, 6, 4831–4839. [Google Scholar]
- Li X., Guo L., Li Y., Guo Z., Hong C., Zhang Y., Wang C. (2017) A unified control for the DC–AC interlinking converters in hybrid AC/DC microgrids, IEEE Trans. Smart Grid 9, 6, 6540–6553. [Google Scholar]
- Tan K.T., Peng X.Y., So P.L., Chu Y.C., Chen M.Z. (2012) Centralized control for parallel operation of distributed generation inverters in microgrids, IEEE Trans. Smart Grid 3, 4, 1977–1987. [CrossRef] [Google Scholar]
- Mazumder S.K., Tahir M., Acharya K. (2008) Master-slave current-sharing control of a parallel DC-DC converter system over an RF communication interface, IEEE Trans. Ind. Electron. 55, 1, 59–66. [CrossRef] [Google Scholar]
- Mahmood H., Michaelson D., Jiang J. (2015) Decentralized power management of a P.V./battery hybrid unit in a droop-controlled islanded microgrid, IEEE Trans. Power Electron. 30, 12, 7215–7229. [CrossRef] [Google Scholar]
- Liang B., Kang L., He J., Zheng F., Xia Y., Zhang Z., Zhang Z., Liu G., Zhao Y. (2019) Coordination control of hybrid AC/DC microgrid, J. Eng. 16, 3264–3269. [CrossRef] [MathSciNet] [Google Scholar]
- Zhou Q., Shahidehpour M., Paaso A., Bahramirad S., Alabdulwahab A., Abusorrah A. (2020) Distributed control and communication strategies in networked microgrids, IEEE Commun. Surv. Tutor. 22, 4, 2586–2633. [CrossRef] [MathSciNet] [Google Scholar]
- Wu D., Tang F., Dragicevic T., Vasquez J.C., Guerrero J.M. (2015) A control architecture to coordinate renewable energy sources and energy storage systems in islanded microgrids, IEEE Trans. Smart Grid 6, 3, 1156–1166. [CrossRef] [Google Scholar]
- Loh P.C., Li D., Chai Y.K., Blaabjerg F. (2012) Autonomous operation of hybrid microgrid with AC and DC subgrids, IEEE Trans. Power Electron. 28, 5, 2214–2223. [Google Scholar]
- Guerrero J.M., Vasquez J.C., Matas J., De Vicuña L.G., Castilla M. (2011) Hierarchical control of droop-controlled AC and DC microgrids—A general approach toward standardization, IEEE Trans. Ind. Electron. 58, 1, 158–172. [CrossRef] [Google Scholar]
- Majumder R., Chaudhuri B., Ghosh A., Majumder R., Ledwich G., Zare F. (2009) Improvement of stability and load sharing in an autonomous microgrid using supplementary droop control loop, IEEE Trans. Power Syst. 25, 2, 796–808. [Google Scholar]
- Tian H., Wen X., Li Y.W. (2018) A harmonic compensation approach for interlinking voltage source converters in hybrid AC-DC microgrids with low switching frequency, CSEE J. Power Energy Syst. 4, 1, 39–48. [CrossRef] [Google Scholar]
- Issa W., Sharkh S., Mallick T., Abusara M. (2016) Abusara: Improved reactive power-sharing for parallel-operated inverters in islanded microgrids, J. Power Electron. 16, 3, 1152–1162. [CrossRef] [Google Scholar]
- Amirkhan S., Radmehr M., Rezanejad M., Khormali S. (2020) A robust control technique for stable operation of a DC/AC hybrid microgrid under parameters and loads variations, Int. J. Electr. Power Energy Syst 117, 105659. [CrossRef] [Google Scholar]
- Antalem D.T., Bhattacharya A. (2020) Decentralized control for grid-interactive hybrid DC/AC ring microgrid under input source fluctuations, in: 2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON), 2–4 October 2020, Greater Noida, India, pp. 383–388. [Google Scholar]
- Elgendy M.A., Zahawi B., Atkinson D.J. (2011) Assessment of perturb and observe MPPT algorithm implementation techniques for PV pumping applications, IEEE Trans. Sustain. Energy 3, 1, 21–33. [Google Scholar]
- Kirakosyan A., El-Saadany E.F., El Moursi M.S., Yazdavar A.H., Al-Durra A. (2019) Communication-free current sharing control strategy for DC microgrids and its application for AC/DC hybrid microgrids, IEEE Trans. Power Syst. 35, 1, 140–151. [Google Scholar]
- Rahim A.P.N., Pagano D.J., Lenz E., Stramosk V. (2014) Modeling and stability analysis of islanded DC microgrids under droop control, IEEE Trans. Power Electron. 30, 8, 4597–4607. [Google Scholar]
- Delghavi M.B., Yazdani A. (2010) Islanded-mode control of electronically coupled distributed-resource units under unbalanced and nonlinear load conditions, IEEE Trans. Power Deliv. 26, 2, 661–673. [Google Scholar]
- Alrajhi Alsiraji H. (2019) A new virtual synchronous machine control structure for voltage source converter in high voltage direct current applications, Umm, Al Qura Univ. J. Eng. Archit. 11, 1, 1–6. [Google Scholar]
- Selman N.H., Mahmood J.R. (2016) Comparison between perturb & observe, incremental conductance and fuzzy logic MPPT techniques at different weather conditions, Int. J. Innov. Res. Technol. Sci. Eng. 5, 7, 12556–12569. [CrossRef] [Google Scholar]
- Alsiraji H.A., El-Shatshat R. (2021) Virtual synchronous machine/dual-droop controller for parallel interlinking converters in hybrid AC–DC microgrids, Arab. J. Sci. Eng. 46, 2, 983–1000. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.