Issue |
Sci. Tech. Energ. Transition
Volume 78, 2023
|
|
---|---|---|
Article Number | 26 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.2516/stet/2023024 | |
Published online | 03 October 2023 |
Regular Article
Titanium dioxide Ag NP enhanced solid solar cell electrodes for favourable efficiency
Murang’a University, P.O. Box 75 (10200), Murang’a, Kenya
* Corresponding author: kimemianjoroge@gmail.com
Received:
15
February
2023
Accepted:
29
August
2023
Population growth leads to a heightened demand for working potential to support modern commercial and residential evolutions. Available conventional energy sources, however, cause environmental pollution and severe health problems like global warming. The current energy sources also face challenges due to factors like global warming that make hydro-generated energy production even more difficult due to droughts. Therefore, alternative energy options need to be explored. The study in question aimed to find a cost-effective and environmentally friendly energy source by fabricating a solar cell that uses titanium dioxide and potassium iodate (mixed in carbon) layers in a solidified structure. TiO2 was chosen due to its photo-generating properties and synthetic steadiness over a spread acidity/basicity neutrality. The iodine/iodide complex was used to replenish the photo-excited electrons while graphite facilitated their migration. The researchers varied the ingredients capacities for the separate electrodes keeping the rest unvaried for improved (I-V) terminal parameters. Deduction from the research established that the (0.4:0.3:0.17:0.01) TiO2/CX:I2:KI proportions resulted in the optimum charge range generation. The inclusion of potassium iodate (KI) improved iodine solvability and facilitated even dispersal in graphite, which was maintained at 0.01 g in all cells. The absorber and receptive layer thicknesses of 2.00 mm and 1.00 mm respectively generated the best 0.979 V open-circuit voltage (Voc) and 12.037 μA short-circuit current (Isc) results. Favorable (10.46%) efficiency (η) and (0.64) fill factor (FF) were derived. Conducting transparent glass was suggested for improving the linkage to the external circuit and models of reducing air pockets in the solid TiO2 photovoltaic devices could further enhance their performance.
Key words: Titanium dioxide (TiO2)
© The Author(s), published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.