Numéro
Sci. Tech. Energ. Transition
Volume 80, 2025
Innovative Strategies and Technologies for Sustainable Renewable Energy and Low-Carbon Development
Numéro d'article 43
Nombre de pages 12
DOI https://doi.org/10.2516/stet/2025022
Publié en ligne 17 juin 2025
  • Mansuri SM (2024) Safe storage of fresh fruits and vegetables, Technical Report, Indian Council of Agricultural Research, https://www.studocu.com/in/document/shri-govind-guru-university/science-and-technology/fruits-and-vegetables-storage-technique/114660224 [Google Scholar]
  • National Horticulture Board (2010) Technical standards and protocols for cold chain in India, Technical Report, https://www.nhb.gov.in/documents/cs2.pdf. [Google Scholar]
  • Mishra R., Chaulya S.K., Prasad G.M., Mandal S.K., Banerjee G. (2020) Design of a low cost, smart and stand-alone PV cold storage system using a domestic split air conditioner, J. Stored Prod. Res. 89, 101720. [CrossRef] [Google Scholar]
  • Arun S., Boche R.J., Nambiar P., Ekka P., Panalkar P., Kumar V., Roy A., Landini S. (2024) Numerical and experimental investigation on performance of thermal energy storage integrated micro-cold storage unit, Appl. Sci. 14, 12, 5166. [CrossRef] [Google Scholar]
  • Ikram H., Javed A., Mehmood M., Shah M., Ali M., Waqas A. (2021) Techno-economic evaluation of a solar PV integrated refrigeration system for a cold storage facility, Sustain. Energy Technol. Assess. 44, 101063. [Google Scholar]
  • Munir A., Ashraf T., Amjad W., Gafoor A., Rehman S., Malik A.U., Hensel O., Sultan M., Morosuk T. (2021) Solar-hybrid cold energy storage system coupled with cooling pads backup: a step towards decentralized storage of perishables, Energies 14, 22, 7531–7550. [Google Scholar]
  • Amjad W., Munir A., Akram F., Parmar A., Precoppe M., Asghar F., Mahmood F. (2023) Decentralized solar-powered cooling systems for fresh fruit and vegetables to reduce post-harvest losses in developing regions: a review, Clean Energy 7, 3, 635–653. [CrossRef] [Google Scholar]
  • Gado M.G., Megahed T.F., Ookawara S., Nada S., El-Sharkawy I.I. (2021) Performance and economic analysis of solar-powered adsorption-based hybrid cooling systems, Energy Convers. Manag. 238, 114134. [CrossRef] [Google Scholar]
  • Wang C., He Z., Li H., Wennerstern R., Sun Q. (2017) Evaluation on performance of a phase change material based cold storage house, Energy Procedia 105, 3947–3952. [CrossRef] [Google Scholar]
  • Roy A., Kale S., Lingayat A., Sur A., Arun S., Sengar D., Gawade S., Wavhal A. (2023) Evaluating energy-saving potential in micro-cold storage units integrated with phase change material, J. Braz. Soc. Mech. Sci. Eng. 45, 10, 1–11. [CrossRef] [Google Scholar]
  • Singha S., Saha D., Brahma M., Singh P.K. (2023) IntelliStore: IoT And AI-based intelligent storage monitoring for perishable food, Internet Technol. Lett. 6, 3, 1–9. [CrossRef] [Google Scholar]
  • Anoop A., Sachin K., Thomas M. (2021) Smart warehousing using node MCU assisted with cloud computing and machine learning, Proc. 3rd Int Conf. Inventive Res. Comput. Appl., ICIRCA 2021, 1087–1093. [Google Scholar]
  • Paul R., Prabhu S.B., Yadav S. (2022) FPGA based intelligent food spoilage detection for commercial storage, Proc. Int. Conf. Edge Comput. Appl., ICECAA 2022, 752–758. [Google Scholar]
  • Guo X., Tseung C., Zare A., Liu T. (2023) Hyperspectral image analysis for the evaluation of chilling injury in avocado fruit during cold storage, Postharvest Biol. Technol. 206, 112548. [CrossRef] [Google Scholar]
  • Loisel J., Duret S., Cornuejols A., Cagnon D., Tardet M., Derens-Bertheau E., Laguerre O. (2021) Cold chain break detection and analysis: can machine learning help? Trends Food Sci. Technol. 112, 391–399. [CrossRef] [Google Scholar]
  • Hoang H.M., Akerma M., Mellouli N., Le Montagner A., Leducq D., Delahaye A. (2021) Development of deep learning artificial neural networks models to predict temperature and power demand variation for demand response application in cold storage, Int. J. Refrig. 131, 857–873. [CrossRef] [Google Scholar]
  • Khanuja G.S., Nandyala S., Palaniyandi B., Elxsi T. (2020) Cold chain management using model based design, machine learning algorithms and data analytics, in: SAE Technical Paper, pp.1–6. [Google Scholar]
  • Kim T.H., Kim J.H., Kim J.Y., Oh S.E. (2022) Egg freshness prediction model using real-time cold chain storage condition based on transfer learning, Foods 11, 19, 3082. [CrossRef] [PubMed] [Google Scholar]
  • Junxiang G., Jingtao X. (2011) Fruit cold storage environment monitoring system based on wireless sensor network, Procedia Eng. 15, 3466–3470. [CrossRef] [Google Scholar]
  • Feng H., Wang W., Chen B., Zhang X. (2020) Evaluation on frozen shellfish quality by blockchain based multi-sensors monitoring and SVM algorithm during cold storage, IEEE Access 8, 54361–54370. [CrossRef] [Google Scholar]
  • Pan L., Zhang Q., Zhang W., Sun Y., Hu P., Tu K. (2016) Detection of cold injury in peaches by hyperspectral reflectance imaging and artificial neural network, Food Chem. 192, 134–141. [CrossRef] [Google Scholar]
  • Wagle S.A., Harikrishnan R., Ali S.H.M., Faseehuddin M. (2022) Classification of plant leaves using new compact convolutional neural network models, Plants 11, 1, 1–25. [Google Scholar]
  • Wagle S.A., Harikrishnan R., Varadarajan V., Kotecha K. (2022) A new compact method based on a convolutional neural network for classification and validation of tomato plant disease, Electronics 11, 2994. [CrossRef] [Google Scholar]
  • Emmanuel A., Tio D.C. (2019) Face shape classification using Inception v3, arXiv preprint. https://doi.org/10.48550/arXiv.1911.07916. [Google Scholar]
  • Joint F.A., Wang C., Joint F.A., Chen D. (2019) Pulmonary image classification based on inception-v3 transfer learning model, IEEE Access 7 146533–146541. [CrossRef] [Google Scholar]
  • Wang X., Li J., Tao J., Wu L., Mou C., Bai W., Zheng X., Zhu Z., Deng Z. (2022) SS symmetry: a recognition method of ancient architectures based on the improved inception V3 model, Symmetry, 14(12), 2679. [CrossRef] [Google Scholar]
  • Meshram V., Pail K. (2021) FruitNet, Dataset. Available at https://data.mendeley.com/datasets/b6fftwbr2v/1 (accessed June 10, 2024). [Google Scholar]
  • Hewajulige I.G.N., Premaseela H.D.S.R. (2020) Fruit ripening: importance of artificial fruit ripening in commercial agriculture and safe use of the technology for consumer health, Sri Lanka J. Food Agric. 6, 1, 57–66. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.