Numéro
Sci. Tech. Energ. Transition
Volume 80, 2025
Emerging Advances in Hybrid Renewable Energy Systems and Integration
Numéro d'article 3
Nombre de pages 14
DOI https://doi.org/10.2516/stet/2024099
Publié en ligne 17 décembre 2024
  • Forkan A.R.M., Kang Y.B., Jayaraman P.P., Liao K., Kaul R., Morgan G., Ranjan R., Sinha S. (2022) CorrDetector: a framework for structural corrosion detection from drone images using ensemble deep learning, Expert Syst. Appl. 193, 116461.1–116461.12. [Google Scholar]
  • Ahmed M.D., Faiyaz M.J.C., Sanyal A. (2022) Inspection and identification of transmission line insulator breakdown based on deep learning using aerial images, Electr. Power Syst. Res. 211, 1–15. [Google Scholar]
  • Ery A., Lin Z. (2022) Template matching and change point detection by M-estimation, IEEE Trans. Inf. Theory 68, 1, 423–447. [CrossRef] [Google Scholar]
  • Ahmad A. (2021) Feature aggregation with attention for aerial image segmentation, IEEE Sens. J. 21, 23, 26978–26984. [CrossRef] [Google Scholar]
  • Sourabh P., Udaysankar D., Yashwanth N., Yogeswara R. (2022) An efficient SIFT-based matching algorithm for optical remote sensing images, Remote Sens. Lett. 13, 10/12, 1069–1079. [CrossRef] [Google Scholar]
  • De L.R., Cabrera-Ponce A.A., Martinez-Carranza J. (2021) Parallel hashing-based matching for real-time aerial image mosaicing. J. Real-Time Image Process. 18, 1, 143–156. [CrossRef] [Google Scholar]
  • Meddeber L., Zouagui T., Berrached N. (2021) Efficient photometric and geometric stitching approach for remote sensing images based on wavelet transform and local invariant, J. Appl. Remote Sens. 15, 3, 034502-1–034502-31. [CrossRef] [Google Scholar]
  • Ekanayake E.M.C.L., Lei Y. (2021) Crowd estimation using key-point matching with support vector regression, IET Image Process. 15, 14, 3551–3558. [CrossRef] [Google Scholar]
  • Luo L. (2024) Research on inspection path planning of power tower, Manuf. Autom. 46, 1, 56–62. [Google Scholar]
  • Harbi J.S., Najm Z.N. (2022) Image decomposition using deep variation priors system, Nonlinear Opt. Quantum Opt. 56, 3/4, 193–204. [Google Scholar]
  • Sumon K.B., Deepak S., Arindam B. (2022) A 51.3-TOPS/W, 134.4-GOPS in-memory binary image filtering in 65-nm CMOS, IEEE J. Solid-State Circuits 57, 1, 323–335. [CrossRef] [Google Scholar]
  • Kotov V.M. (2021) Two-dimensional image edge enhancement using a spatial frequency filter of two-color radiation, Quantum Electron. 51, 4, 348–352. [CrossRef] [Google Scholar]
  • Devulapalli S., Krishnan R. (2021) Remote sensing image retrieval by integrating automated deep feature extraction and handcrafted features using curvelet transform, J. Appl. Remote Sens. 15, 1, 016504-1–016504-8. [CrossRef] [Google Scholar]
  • Li W., Resmerita E., Vese L.A. (2021) Multiscale hierarchical image decomposition and refinements: qualitative and quantitative results, SIAM J. Imaging Sci. 14, 2, 844–877. [CrossRef] [MathSciNet] [Google Scholar]
  • Tarsitano F., Bruderer C., Schawinski K., Hartley W.G. (2022) Image feature extraction and galaxy classification: a novel and efficient approach with automated machine learning, Mon. Not. R. Astron. Soc. 511, 3, 3330–3338. [CrossRef] [Google Scholar]
  • Geet L., Chitta R., Jialei C., Hao Y., Chuck Z. (2023) Convolutional neural network-assisted adaptive sampling for sparse feature detection in image and video data, IEEE Intell. Syst. 38, 1, 45–57. [Google Scholar]
  • Dong F.J., Yuan Y. (2023) Simulation of local feature spot detection of panoramic visual images in complex scenes, Comput. Simul. 40, 7, 168–171 189. [Google Scholar]
  • Salmi A., Hammouche K., Macaire L. (2021) Constrained feature selection for semisupervised color-texture image segmentation using spectral clustering, J. Electron. Imaging 30, 1, 13014.1–13014.28. [CrossRef] [Google Scholar]
  • Kesav O., Homa R.G.K. (2021) Automated detection system for texture feature based classification on different image datasets using S-transform, Int. J. Speech Technol. 24, 2, 251–258. [CrossRef] [Google Scholar]
  • Nouri M., Baleghi Y. (2023) An active contour model reinforced by convolutional neural network and texture description, Neurocomputing 528, 125–135. [CrossRef] [Google Scholar]
  • Kesav O., Homa R.G.K. (2021) Automated detection system for texture feature based classification on different image datasets using S-transform, Int. J. Speech Technol. 24, 2, 251–258. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.