Open Access
Numéro |
Sci. Tech. Energ. Transition
Volume 80, 2025
|
|
---|---|---|
Numéro d'article | 28 | |
Nombre de pages | 8 | |
DOI | https://doi.org/10.2516/stet/2025007 | |
Publié en ligne | 14 mars 2025 |
- Jackson R.B., Saunois M., Bousquet P., Canadell J.G., Poulter B., Stavert A.R., Bergamashi P., Niwa Y., Tsuruta A. (2020) Increasing anthropogenic emissions arise equally from agricultural and fossil fuel sources, Environ. Res. Lett. 15, 7, 071002. https://doi.org/10.1088/1748-9326/ab9ed2. [NASA ADS] [CrossRef] [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). (2021) Climate change 2021: the physical science basis, in: Masson-Delmotte V., Zhai P., Pirani A., Connors S.L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M.I., Huang M., Leitzell K., Lonnoy E., Matthews J.B.R., Maycock T.K., Waterfield T., Yelekçi O., Yu R., Zhou B. (eds.), Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p. 2391. https://doi.org/10.1017/9781009157896. [Google Scholar]
- International Energy Agency (IEA). (2024) Methane tracker. https://www.iea.org/data-and-statistics/data-tools/methane-tracker-data-explorer. Accessed 1 January 2025. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). (2013) Anthropogenic and natural radiative forcing, in: Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M. (eds.), Climate change 2013: The physical science basis, contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. [Google Scholar]
- Saunois M., Stavert A.R., Poulter B., Bousquet P., Canadell J.G., Jackson R.B., Raymond P.A., Dlugokencky E.J., Houweling S., Patra P.K., Ciais P., Arora V.K., Bastviken D., Bergamaschi P., Blake D.R., Brailsford G., Bruhwiler L., Carlson K.M., Carrol M., Castaldi S., Chandra N., Crevoisier C., Crill P.M., Covey K., Curry C.L., Etiope G., Frankenberg C., Gedney N., Hegglin M.I., Höglund-Isaksson L., Hugelius G., Ishizawa M., Ito A., Janssens-Maenhout G., Jensen K.M., Joos F., Kleinen T., Krummel P.B., Langenfelds R.L., Laruelle G.G., Liu L., Machida T., Maksyutov S., McDonald K.C., McNorton J., Miller P.A., Melton J.R., Morino I., Müller J., Murguia-Flores F., Naik V., Niwa Y., Noce S., O’Doherty S., Parker R.J., Peng C., Peng S., Peters G.P., Prigent C., Prinn R., Ramonet M., Regnier P., Riley W.J., Rosentreter J.A., Segers A., Simpson I.J., Shi H., Smith S.J., Steele L.P., Thornton B.F., Tian H., Tohjima Y., Tubiello F.N., Tsuruta A., Viovy N., Voulgarakis A., Weber T.S., van Weele M., van der Werf G.R., Weiss R.F., Worthy D., Wunch D., Yin Y., Yoshida Y., Zhang W., Zhang Z., Zhao Y., Zheng B., Zhu Q., Zhu Q., Zhuang Q. (2020) The global methane budget 2000–2017, Earth Syst. Sci. Data 12, 3, 1561–1623. https://doi.org/10.5194/essd-12-1561-2020. [CrossRef] [Google Scholar]
- Shindell D., Kuylenstierna J.C.I., Vignati E., van Dingenen R., Amann M., Klimont Z., Anenberg S.C., Muller N., Janssens-Maenhout G., Raes F., Schwartz J., Faluvegi G., Pozzoli L., Kupiainen K., Höglund-Isaksson L., Emberson L., Streets D., Ramanathan V., Hicks K., Oanh N.T.K., Milly G., Williams M., Demkine V., Fowler D. (2012) Simultaneously mitigating near-term climate change and improving human health and food security, Science 335, 183–189. https://doi.org/10.1126/science.1210026. [CrossRef] [PubMed] [Google Scholar]
- European Commissions. (2022) Global methane pledge ministerial at COP17. https://ec.europa.eu/commission/presscorner/detail/en/SPEECH_22_6995. Assessed 17 June 2024. [Google Scholar]
- Cain M., Jenkins S., Allen M.R., Lynch J., Frame D.J., Macey A.H., Peters G.P. (2021) Methane and the Paris agreement temperature goals, Philos. Trans. R. Soc. A 380, 20200456. https://doi.org/10.1098/rsta.2020.0456. [Google Scholar]
- Smith S.J., Chateau J., Dorheim K., Drouet L., Durand-Lasserve O., Fricko O., Fujimori S., Hanaoka T., Harmsen M., Hilaire J., Keramidas K., Klimont Z., Luderer G., Moura M.C.P., Riahi K., Rogelj J., Sano F., van Vuuren D.P., Wada K. (2020) Impact of methane and black carbon mitigation on forcing and temperature: a multi-model scenario analysis, Clim. Change 163, 1427–1442. https://doi.org/10.1007/s10584-020-02794-3. [CrossRef] [Google Scholar]
- Mar K.A., Unger C., Walderworff L., Butler T. (2022) Beyond CO2 equivalence: the impacts of methane on climate, ecosystems, and health, Environ. Sci. Policy 134, 127–136. https://doi.org/10.1016/j.envsci.2022.03.027. [CrossRef] [Google Scholar]
- International Energy Agency (IEA). (2020) Methane tracker 2020. https://www.iea.org/reports/methane-tracker-2020. Assessed 17 June 2024. [Google Scholar]
- Malley C.S., Borgford-Parnell N., Haeussling S., Howard I.C., Lefèvre E.N., Kuylenstierna J.C.I. (2023) A roadmap to achieve the global methane pledge, Environ. Res. Clim. 2, 1, 011003. https://doi.org/10.1088/2752-5295/acb4b4. [CrossRef] [Google Scholar]
- Saint-Vincent P.M.B., Pekney P.J. (2020) Beyond-the-meter: unaccounted sources of methane emissions in the distribution sector, Environ. Sci. Technol. 54, 1, 39–49. https://doi.org/10.1021/acs.est.9b04657. [CrossRef] [PubMed] [Google Scholar]
- Botev L., Johnson P. (2020) Applications of statistical process control in the management of unaccounted for gas, J. Nat. Gas Sci. Eng. 76, 103194. https://doi.org/10.1016/j.jngse.2020.103194. [CrossRef] [Google Scholar]
- Maazallahi H., Delre A., Scheutz C., Fredenslund A.M., Schwietzke S., van der Gon H.D., Röckmann T. (2023) Intercomparison of detection and quantification methods for methane emissions from the natural gas distribution network in Hamburg, Germany, Atmos. Meas. Tech. 16, 21, 5051–5073. https://doi.org/10.5194/amt-16-5051-2023. [CrossRef] [Google Scholar]
- MacMullin S., Rongère F.-X. (2023) Measurement-based emissions assessment and reduction through accelerated detection and repair of large leaks in a gas distribution network, Atmos. Environ. 17, 100201. https://doi.org/10.1016/j.aeaoa.2023.100201. [Google Scholar]
- Kumar P., Broquet G., Yver-Kwok C., Laurent O., Gichuki S., Caldow C., Cropley F., Lauvaux T., Ramonet T., Berthe G., Martin F., Duclaux O., Juery C., Bouchet C., Ciais P. (2021) Mobile atmospheric measurements and local-scale inverse estimation of the location and rates of brief CH4 and CO2 releases from point sources, Atmos. Meas. Tech. 14, 9, 5987–6006. https://doi.org/10.5194/amt-14-5987-2021. [CrossRef] [Google Scholar]
- Pandey S., van Nistelrooij M., Maasakkers J.D., Sutar P., Houweling S., Varon D.J., Tol P., Gains D., Worden J., Aben I. (2023) Daily detection and quantification of methane leaks using Sentinel-3: a tiered satellite observation approach with Sentinel-2 and Sentinel-5p, Remote Sens. Environ. 296, 113716. https://doi.org/10.1016/j.rse.2023.113716. [CrossRef] [Google Scholar]
- Duren R.M., Thorpe A.K., Foster K.T., Rafiq T., Hopkins F.M., Yadav V., Bue B.D., Thompson D.R., Conley S., Colombi N.K., Frankenberg C., McCubbin I.B., Eastwood M.L., Falk M., Herner J.D., Croes B.E., Green R.O., Miller C.E. (2019) California’s methane super-emitters, Nature 575, 180–184. https://doi.org/10.1038/s41586-019-1720-3. [CrossRef] [PubMed] [Google Scholar]
- Cedigaz. (2023) Unaccounted for gas (UFG) in gas network utilities – an international perspective. https://www.cedigaz.org/unaccounted-for-gas-ufg-in-gas-network-utilities-an-international-perspective/. Accessed 12 July 2024. [Google Scholar]
- Arpino F., Dell’Isola M., Ficco G., Vigo P. (2014) Unaccounted for gas in natural transmission networks: prediction model and analysis of the solution, J. Nat. Gas Sci. Eng. 17, 58–70. https://doi.org/10.1016/j.jngse.2014.01.003. [CrossRef] [Google Scholar]
- Cooper J., Balcombe P., Hawkes A. (2021) The quantification of methane emissions and assessment of emissions data for the largest natural gas supply chains, J. Clean. Prod. 320, 128856. https://doi.org/10.1016/j.jclepro.2021.128856. [CrossRef] [Google Scholar]
- Shirizadeh B., Villavicencio M., Douguet S., Truby J., Bou Issa C., Sokhna Seck G., D’herbemont V., Hache E., Malbec L.-M., Sabathier J., Venugopal M., Lagrange F., Saunier S., Straus J., Reigstad G.A. (2023) The impact of methane leakage on the role of natural gas in the European energy transition, Nat. Commun. 14, 5756. https://doi.org/10.1038/s41467-023-41527-9. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.