Numéro |
Sci. Tech. Energ. Transition
Volume 79, 2024
Decarbonizing Energy Systems: Smart Grid and Renewable Technologies
|
|
---|---|---|
Numéro d'article | 46 | |
Nombre de pages | 12 | |
DOI | https://doi.org/10.2516/stet/2024038 | |
Publié en ligne | 5 août 2024 |
- Khayyam S., Ponci F., Goikoetxea J., et al. (2016) Railway energy management system: centralized–decentralized automation architecture[J], IEEE Trans. Smart Grid 7, 2, 1164–1175. [CrossRef] [Google Scholar]
- Huang Y.H. (1999) Study on two systems electricity price[J], Hydropower Energy Sci. 17, 3, 57–60, 72. [Google Scholar]
- Wenjing W., Haitao H., Ke W., et al. (2019) Energy storage scheme and control strategies of high-speed railway based on railway power conditioner[J], J. Electrotechnol. 34, 6, 1290–1299. [Google Scholar]
- Frilli A., Meli E., Nocciolini D., et al. (2016) Energetic optimization of regenerative braking for high speed railway systems[J], Energy Convers. Manag. 129, 200–215. [CrossRef] [Google Scholar]
- Qingyuan W., Xiaoyun F., Jinling Z., et al. (2015) Simulation study on optimal energy-efficient control of high speed train considering regenerative brake energy[J], China Railway Sci. 36, 1, 96–103. [Google Scholar]
- Dajie W., Ying C., Yingwei T., et al. (2018) Application and research of flywheel energy storage system in electrified railway[J], Energy Storage Sci. Technol. 7, 5, 853–860. [Google Scholar]
- Qunzhan L., Xijun W., Xiaohong H., et al. (2019) Research on flywheel energy storage technology for electrified railway[J], Chin. J. Electr. Eng. 39, 7, 2025–2032. [Google Scholar]
- Qiqi F., Songrong W., Yabo Z., et al. (2019) Research on regenerative braking energy recovery device for railroad based on MMC[J], Electr. Autom. 41, 1, 103–105. [Google Scholar]
- Lee W., Xiang L., Schober R., et al. (2013) Analysis of the behavior of electric vehicle charging stations with renewable generations, in: IEEE International Conference on Smart Grid Communications. [Google Scholar]
- Han Y., Li Q., Wang T., et al. (2018) Multisource coordination energy management strategy based on SOC consensus for a PEMFC–battery–supercapacitor hybrid tramway[J], IEEE Trans. Vehic. Technol. 67, 1, 296–305. [CrossRef] [Google Scholar]
- Choi M., Lee J., Seo S. (2014) Real-time optimization for power management systems of a battery/supercapacitor hybrid energy storage system in electric vehicles[J], IEEE Trans. Vehic. Technol. 63, 8, 3600–3611. [CrossRef] [Google Scholar]
- Song Z., Li J., Han X., et al. (2014) Multi-objective optimization of a semi-active battery/supercapacitor energy storage system for electric vehicles[J], Appl. Energy 135, 212–224. [CrossRef] [Google Scholar]
- Fujun M., An L., Chuanping W., et al. (2011) Research on the control method of railroad power regulator in V/V traction power supply system[J], Chin. J. Electr. Eng. 13, 65–72. [Google Scholar]
- Cai J., Xu Q., Ye J., et al. (2016) Optimal configuration of battery energy storage system considering comprehensive benefits in power systems, in: 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC 2016 – ECCE Asia). [Google Scholar]
- Youhua J., Xiangwei J., Yan Q., et al. (2018) Research on power regulator for electrified railroad based on hysteresis loop control[J], Power Electron. Technol. 3, 97–100. [Google Scholar]
- Yanping L., Jing S., Xizheng Z., et al. (2018) Modular multilevel railroad power regulator hysteresis loop control strategy[J], J. Power Syst. Autom. 6, 39–44. [Google Scholar]
- Youhua J., Xiangwei J., Zhenbang W., et al. (2018) Research on overload compensation strategy of power regulator for electrified railroad[J], Power Electron. Technol. 7, 47–49. [Google Scholar]
- Shunkai L. (2019) Power quality governance program of traction power supply system for mixed-running AC and DC locomotives[J], Sci. Technol. Innov. Appl. 266, 10, 7–12. [Google Scholar]
- Youhua J., Wenji W., Le Z., et al. (2019) Research and improvement of command signal extraction for railroad power conditioner[J], Power Electron. Technol. 53, 3, 65–69. [CrossRef] [Google Scholar]
- Youhua J., Wenji W., Le Z., et al. (2019) Capacity optimization of railway static power conditioner based on particle swarm optimization[J], Power Electron. Technol. 53, 2, 31–33, 39. [Google Scholar]
- Siqi L., Xin L., Lei T. (2017) Optimized design of railroad power conditioner capacity in V/v based traction power supply system[J], J. Hunan Eng. College (Autonomous Sci. Ed.) 3, 16–20. [Google Scholar]
- Chen H., Che Y., Fu R., et al. (2018) Study on regenerative braking energy utilization and power quality control in electrified railways, in: IEEE International Power Electronics & Application Conference & Exposition. [Google Scholar]
- Xi M., Xin G., Pei L., et al. (2018) A novel railway power conditioner based on super capacitor energy storage system[J], J. Electrotechnol. 33, 6, 1208–1218. [Google Scholar]
- Jun Y. (2012) Application of three-phase V/V wiring transformer, in: Proceedings of the Third Railway Safety Risk Management and Technical Equipment Symposium (Upper Volume). [Google Scholar]
- Su R., Gu Q., Wen T. (2014) Optimization of high-speed train control strategy for traction energy saving using an improved genetic algorithm, J. Appl. Math. 2014, 7, Article ID 507308. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.