Open Access
Numéro |
Sci. Tech. Energ. Transition
Volume 79, 2024
|
|
---|---|---|
Numéro d'article | 1 | |
Nombre de pages | 10 | |
DOI | https://doi.org/10.2516/stet/2023042 | |
Publié en ligne | 9 janvier 2024 |
- World Steel Association, Global Crude Steel Output Increases by 3.4% in 2019. Available at: https://www.worldsteel.org/media-centre/press-releases/2020/Global-crude-steel-output-increases-by-3.4–in-2019.html. [Google Scholar]
- Choudhury R., Bhaktavatsalam A.K. (1997) Energy inefficiency of Indian steel industry – scope for energy conservation. Energy Convers. Manag. 38, 2, 167–171. https://doi.org/10.1016/0196-8904(96)00029-5. [CrossRef] [Google Scholar]
- Xu C., Cang D. (2010) A brief overview of low CO₂ emission technologies for iron and steel making. J. Iron Steel Res. Int. 17, 3, 1–7. https://doi.org/10.1016/S1006-706X(10)60064-7. [CrossRef] [Google Scholar]
- Olmez G.M., Dilek F.B., Karanfil T., Yetis U. (2016) The environmental impacts of iron and steel industry: a life cycle assessment study. J. Clean. Prod. 130, 195–201. https://doi.org/10.1016/j.jclepro.2015.09.139. [CrossRef] [Google Scholar]
- Akbostancı E., Tunc G.I., Turut-Asık S. (2011) CO₂ emissions of Turkish manufacturing industry: a decomposition analysis. Appl. Energy 88, 6, 2273–2278. https://doi.org/10.1016/j.apenergy.2010.12.076. [CrossRef] [Google Scholar]
- Ates S.A. (2015) Energy efficiency and CO₂ mitigation potential of the Turkish iron and steel industry using the LEAP (long-range energy alternatives planning) system. Energy 90, 417–428. https://doi.org/10.1016/j.energy.2015.07.059. [CrossRef] [Google Scholar]
- Adanir T., Ozdemir T. Energy and exergy analyses of the power plant at Eregli iron and steel factory, Global Conference on Global Warming 2008, July 6–10, 2008, Istanbul, Turkey, pp. 168. [Google Scholar]
- Terzi U.K., Baykal R. (2011) Efficient and effective use of energy: a case study of TOFAS. Environ. Res. Eng. Manag. 1, 55, 29–33. [Google Scholar]
- Tutunoglu Y., Guven A., Ozturk I.T. (2012) Energy analysis of glass tempering furnace. Eng. Mach. 53, 629, 55–62. [Google Scholar]
- Yu W., Thurston G.D. (2023) An interrupted time series analysis of the cardiovascular health benefits of a coal coking operation closure. Environ. Res. Health 1, 4, 45002. https://doi.org/10.1088/2752-5309/ace4ea. [Google Scholar]
- Cui B., Wu B., Wang M., Jin X., Shen Y., Chang L. (2024) A preliminary study on the quality evaluation of coking coal from its structure thermal transformation: applications of fluidity and swelling indices. Fuel 355, 129418. https://doi.org/10.1016/j.fuel.2023.129418. [CrossRef] [Google Scholar]
- Mayo S., Sakurovs R., Jenkins D., Mahoney M. (2023) Using xenon K-edge subtraction to image the gas-accessible porosity distribution within metallurgical cokes and their partially reacted products. Tomo. Mater. Struct. 3, 100013. https://doi.org/10.1016/j.tmater.2023.100013. [Google Scholar]
- Razzaq R., Li C., Zhang S. (2013) Coke oven gas: availability, properties, purification, and utilization in China. Fuel 113, 287–299. https://doi.org/10.1016/j.fuel.2013.05.070. [CrossRef] [Google Scholar]
- Larsson M., Sandberg P., Dahl J., Soderstrom M., Vourinen H. (2004) System gains from widening the system boundaries: analysis of the material and energy balance during renovation of a coke oven battery. Int. J. Energy Res. 28, 1051–1064. https://doi.org/10.1002/er.1013. [CrossRef] [Google Scholar]
- Ertem M.E., Ozdabak A. (2005) Energy balance application for Erdemir Coke Plant with thermal camera measurements. Appl. Therm. Eng. 25, 423–433. https://doi.org/10.1016/j.applthermaleng.2004.05.013. [CrossRef] [Google Scholar]
- Sultanguzin I.A., Isaev M.V., Kurzanov S.Y. (2011) Optimizing the production of coke, coal chemicals, and steel on the basis of environmental and energy criteria. Metallurgist 54, 9–10, 600–607. [CrossRef] [Google Scholar]
- Ajah S.A., Idorenyin D., Ezurike B.O., Nwokenkwo U., Ikwuagwu C.V. (2023) Thermal analysis to investigate the effects of operating parameters on conventional cupola furnace efficiency. Proc. Inst. Mech. Eng. Part E 237, 4, 1354–1366. https://doi.org/10.1177/09544089221113401. [CrossRef] [Google Scholar]
- Nogami H., Yagi J., Kitamura S., Austin P.R. (2006) Analysis on material and energy balances of ironmaking systems on blast furnace operations with metallic charging, top gas recycling and natural gas injection. ISIJ Int. 46, 12, 1759–1766. [CrossRef] [Google Scholar]
- Zhao J., Liu Q., Wang W., Pedrycz W., Cong L. (2012) Hybrid neural prediction and optimized adjustment for coke oven gas system in steel industry. IEEE Trans. Neural Netw. Learn. Syst. 23, 3, 439–450. https://doi.org/10.1109/TNNLS.2011.2179309. [CrossRef] [PubMed] [Google Scholar]
- Xiao K., Wang Y., Hu H., Wen Z., Lou G., Su F., Dou R., Liu X. (2023) Numerical analysis on heat transfer process in the coke oven with the multi-chamber coupling mathematical model. Case Stud. Therm. Eng. 44, 102858. https://doi.org/10.1016/j.csite.2023.102858. [CrossRef] [Google Scholar]
- Liu H., Guo W. (2023) Comparative study on life cycle energy consumption, carbon emissions and economic performance of various coke-oven gas utilization schemes. Fuel 332, 125706. https://doi.org/10.1016/j.fuel.2022.125706. [CrossRef] [Google Scholar]
- Casemiro R.L., Tapanes N.C.O., Souza M.C.L., Santana A.I.C., Pinto W.C.L. (2022) Energetic estimation of heat-recovery coke oven, Eng. Térm. (Therm. Eng.) 21, 2, 13–20. [Google Scholar]
- Lin W., Feng Y., Zhang X. (2015) Numerical study of volatiles production, fluid flow and heat transfer in coke ovens. Appl. Therm. Eng. 81, 353–358. https://doi.org/10.1016/j.applthermaleng.2015.02.056. [CrossRef] [Google Scholar]
- Magrinho A., Semiao V., Carvalho M.G. (2001) Energy and environmental analysis of an entire coke production plant using ECLIPSE. Int. J. Energy Res. 25, 93–106. [CrossRef] [Google Scholar]
- Mahato N., Agarwal H., Jain J. (2022) Reduction of specific heat consumption by modification of reversal cycle period of coke oven battery. Mater. Today: Proc. 61, 1149–1153. https://doi.org/10.1016/j.matpr.2021.12.032. [CrossRef] [Google Scholar]
- Buczynski R., Weber R., Kim R., Schwöppe P. (2016) One-dimensional model of heat-recovery, non-recovery coke ovens. Part II: Coking-bed sub-model. Fuel 181, 1115–1131. https://doi.org/10.1016/j.fuel.2016.01.086. [CrossRef] [Google Scholar]
- Farias Neto G.W., Leite M., Marcelino T., Carneiro L.O., Brito K.D., Brito R.P. (2021) Optimizing the coke oven process by adjusting the temperature of the combustion chambers. Energy 217, 119419. https://doi.org/10.1016/j.energy.2020.119419. [CrossRef] [Google Scholar]
- Veinskii V.V. (2011) Simulation of coking in coke furnaces. Coke Chem. 54, 12, 469–476. https://doi.org/10.3103/S1068364X11120167. [CrossRef] [Google Scholar]
- Das S.K., Godiwalla K.M., Mehrotra S.P. (2007) A mathematical model for prediction of physical properties of the coke oven charge during carbonisation. High Temp. Mater. Process. 26, 1, 43–57. [Google Scholar]
- Tiwari H.P., Saxena V.K., Haldar S.K., Sriramoju S.K. (2017) Assessment of thermal efficiency of heat recovery coke making. Heat Mass Transf. 53, 8, 2517–2529. https://doi.org/10.1007/s00231-017-2003-x. [CrossRef] [Google Scholar]
- Larsson M. (2004) Process integration in the steel industry: Possibilities to analyse energy use and environmental impacts for an integrated steel mill, Doctoral dissertation, Lulea University of Technology. [Google Scholar]
- Lu J., Lu X., Liu H., Wang H., He H. (2010) Calculation and analysis of dissipation heat loss in large-scale circulating fluidized bed boilers. Appl. Therm. Eng. 30, 13, 1839–1844. [CrossRef] [Google Scholar]
- Eisermann W., Johnson P., Conger W.L. (1980) Estimating thermodynamic properties of coal, char, tar and ash. Fuel Process. Technol. 3, 1, 39–53. https://doi.org/10.1016/0378-3820(80)90022-3. [CrossRef] [Google Scholar]
- Eremin A.Y., Mishchikhin V.G., Stakheev S.G., Gilyazetdinov R.R., Shvetsov V.I. (2011) Using coke-battery flue gas to dry coal batch before coking. Coke Chem. 54, 3, 77–85. https://doi.org/10.3103/S1068364X11030021. [CrossRef] [Google Scholar]
- Fardhyanti D.S., Damayanti A. (2016) Analysis of coal tar compositions produced from sub-bituminous kalimantan coal tar. J. Sains Teknol. 14, 1, 31–38. https://doi.org/10.15294/sainteknol.v14i1.7613. [Google Scholar]
- Ratnaningsih W., Sukandar, Wahyuningrum D. (2021) Coal tar waste utilization by cracking into fuel source and its separation using the fractional vacuum distillation method. IOP Conf. Ser.: Earth Environ. Sci. 802, 1, 12039. https://doi.org/10.1088/1755-1315/802/1/012039. [CrossRef] [Google Scholar]
- Lesniak B., Slupik L., Jakubina G. (2013) The determination of the specific heat capacity of coal based on literature data. Chemik 67, 6, 560–571. [Google Scholar]
- Cengel Y.A., Boles M.A., Kanoglu M. (2019) Thermodynamics: an engineering approach, McGraw Hill, New York ISBN 9789813157873. [Google Scholar]
- Takagi S. (1980) Energy saving in ironmaking processes. Trans. ISIJ 20, 338–352. [CrossRef] [Google Scholar]
- Bisio G., Rubatto G. (2000) Energy saving and some environment improvements in coke-oven plants. Energy 25, 3, 247–265. https://doi.org/10.1016/S0360-5442(99)00066-3. [CrossRef] [Google Scholar]
- Zhang H., Chowdhury A.J.K. (2019) Research on integrated technology of desulphurization, denitration and waste heat recovery of coke oven flue gas. Nat. Environ. Pollut. Technol. 18, 5, 1621–1625. [Google Scholar]
- Zhang G., Li S., Jiang H., Xie G. (2015) Application of radial heat pipe to heat recovery of flue gas, in: 5th International Conference on Advanced Engineering Materials and Technology (AEMT 2015), August 22–23, 2015, Guangzhou, China, pp. 282–285. [Google Scholar]
- O'Keefe J.M., Henke K.R., Hower J.C., Engle M.A., Stracher G.B., Stucker J.D., Drew J.W., Staggs W.D., Murray T.M., Hammond M.L. III, Adkins K.D. (2010) CO2, CO, and Hg emissions from the Truman Shepherd and Ruth Mullins coal fires, eastern Kentucky, USA. Sci. Total Environ. 408, 7, 1628–1633. [CrossRef] [Google Scholar]
- Türkmen B.A. (2022) Environmental performance of high-efficiency natural gas combined cycle plant. Energy Sources A: Recovery Util. Environ. Eff. 44, 1, 57–74. https://doi.org/10.1080/15567036.2020.1856974. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.