Numéro |
Sci. Tech. Energ. Transition
Volume 79, 2024
Decarbonizing Energy Systems: Smart Grid and Renewable Technologies
|
|
---|---|---|
Numéro d'article | 18 | |
Nombre de pages | 9 | |
DOI | https://doi.org/10.2516/stet/2024011 | |
Publié en ligne | 15 mars 2024 |
- Limmanee A., Sitthiphol N., Jaroensathainchok S., Pluemkamon R., Kotesopa S., Udomdachanut N., Hongsingthong A. (2023) A survey of decommissioned photovoltaic modules from solar power plants in Thailand: Performance and second life opportunities, IEEJ Trans. Electr. Electron. Eng. 18, 12, 1967–1972. https://doi.org/10.1002/tee.23883. [CrossRef] [Google Scholar]
- Deng R., Chang N., Lunardi M.M., Dias P., Bilbao J., Ji J., Chong C.M. (2021) Remanufacturing end-of-life silicon photovoltaics: Feasibility and viability analysis, Prog. Photovolt. Res. Appl. 29, 7, 760–774. https://doi.org/10.1002/pip.3376. [CrossRef] [Google Scholar]
- Tsanakas J.A., van der Heide A., Radavičius T., Denafas J., Lemaire E., Wang K., Poortmans J., Voroshazi E. (2020) Towards a circular supply chain for PV modules: Review of today's challenges in PV recycling, refurbishment and re-certification, Progress in Photovoltaics: Research and Applications 28, 6, 454–464. https://doi.org/10.1002/pip.3193. [CrossRef] [Google Scholar]
- Mühleisen W., Hirschl C., Brantegger G., Neumaier L., Spielberger M., Sonnleitner H., Kubicek B., Ujvari G., Ebner R., Schwark M., Eder G.C. (2019) Scientific and economic comparison of outdoor characterisation methods for photovoltaic power plants, Renew. Energy 134, 321–329. https://doi.org/10.1016/j.renene.2018.11.044. [CrossRef] [Google Scholar]
- Dhere N.G., Shiradkar N., Schneller E., Gade V. (2013) The reliability of bypass diodes in PV modules, in Proceedings Volume 8825, Reliability of Photovoltaic Cells, Modules, Components, and Systems VI, 88250I, SPIE Solar Energy + Technology, San Diego, California, United States, . https://doi.org/10.1117/12.2026782. [Google Scholar]
- Lee C.G., Shin W.G., Lim J.R., Kang G.H., Ju Y.C., Hwang H.M., Chang H.S., Ko S.W. (2021) Analysis of electrical and thermal characteristics of PV array under mismatching conditions caused by partial shading and short circuit failure of bypass diodes, Energy 218, 119480. https://doi.org/10.1016/j.energy.2020.119480. [CrossRef] [Google Scholar]
- Xiao C., Hacke P., Johnston S., Sulas-Kern D.B., Jiang C., Al-Jassim M. (2020) Failure analysis of field-failed bypass diodes, Prog. Photovol. Res. Appl. 28, 9, 909–918. https://doi.org/10.1002/pip.3297. [CrossRef] [Google Scholar]
- Dhakshinamoorthy M., Sundaram K., Murugesan P., David P.W. (2022) Bypass diode and photovoltaic module failure analysis of 1.5 kW solar PV array, Energy Sources A: Recovery Util. Environ. Effects 44, 2, 4000–4015. https://doi.org/10.1080/15567036.2022.2072023. [Google Scholar]
- Ko S.W., Ju Y.C., Hwang H.M., So J.H., Jung Y.S., Song H.J., Song H.E., Kim S.H., Kang G.H. (2017) Electric and thermal characteristics of photovoltaic modules under partial shading and with a damaged bypass diode, Energy 128, 232–243. https://doi.org/10.1016/j.energy.2017.04.030. [CrossRef] [Google Scholar]
- Muntwyler U., Neukomm R., Gfeller D. (2020) The bypass-diode – a weakness in today’s PV systems, in 37th European Photovoltaic Solar Energy Conference and Exhibition, pp. 1100–1107. https://doi.org/10.4229/eupvsec20202020-4av.2.13. [Google Scholar]
- Shin W., Ko S., Song H., Ju Y., Hwang H., Kang G. (2018) Origin of bypass diode fault in c-Si photovoltaic modules: Leakage current under high surrounding temperature, Energies 11, 9, 2416. https://doi.org/10.3390/en11092416. [CrossRef] [Google Scholar]
- Häberlin H. (2008) Measurement of damages at bypass diodes by induced voltages and currents in PV modules caused by nearby lightning currents with standard waveform, in Semantic Scholar. (accessed Jan. 13, 2024). https://api.semanticscholar.org/CorpusID:107926340 . [Google Scholar]
- Witteck R., Siebert M., Blankemeyer S., Schulte-Huxel H., Köntges M. (2020) Three bypass diodes architecture at the limit, IEEE J. Photovolt. 10, 6, 1828–1838. https://doi.org/10.1109/jphotov.2020.3021348. [CrossRef] [Google Scholar]
- Köntges M., Kurtz S., Jahn U., Berger K.A., Kato K., Friesen T., Liu H., Van Iseghem M., International Energy Agency (IEA), Photovoltaic Power Systems Programme (PVPS), Performance and reliability of photovoltaic systems – subtask 3.2: review of failures of photovoltaic modules, Sub-chapter 6.2.7, IEA PVPS Task 13 – External final report 2014, pp. 85–87. ISBN 978-3-906042-16-9. [Google Scholar]
- Bastidas-Rodríguez J., Ramos-Paja C., Serna-Garcés S.I. (2022) Improved modelling of bypass diodes for photovoltaic applications, Alex. Eng. J. 61, 8, 6261–6273. https://doi.org/10.1016/j.aej.2021.11.055. [CrossRef] [Google Scholar]
- Bauwens P., Doutreloigne J. (2014) Reducing partial shading power loss with an integrated smart bypass, Sol. Energy 103, 134–142. https://doi.org/10.1016/j.solener.2014.01.040. [CrossRef] [Google Scholar]
- Pennisi S. (2011) Low-power cool bypass switch for hot spot prevention in photovoltaic panels, ETRI J. 33, 6, 880–886. https://doi.org/10.4218/etrij.11.0110.0744. [CrossRef] [Google Scholar]
- Schottky diode, Wikipedia (2023) https://en.wikipedia.org/w/index.php?title=Schottky_diode&oldid=1170282638 (accessed Dec. 31, 2023). [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.