Open Access
Review
Numéro |
Sci. Tech. Energ. Transition
Volume 78, 2023
|
|
---|---|---|
Numéro d'article | 37 | |
Nombre de pages | 15 | |
DOI | https://doi.org/10.2516/stet/2023035 | |
Publié en ligne | 13 décembre 2023 |
- Abboushi B., Irvin L., Bermudez E.R.-F., Royer M. (2022) Evaluating luminance uniformity metrics using online experiments, LEUKOS 19, 2, 1–16. [Google Scholar]
- Adam G.K., Kontaxis P.A., Doulos L.T., Madias E.N.D., Bouroussis C.A., Topalis F.V. (2019) Embedded microcontroller with a CCD camera as a digital lighting control system, Electronics 8, 1, 33. https://doi.org/10.3390/electronics8010033. [CrossRef] [Google Scholar]
- Adu-Manu K.S., Adam N., Tapparello C., Ayatollahi H. (2018) Energy-Harvesting Wireless Sensor Networks (EH-WSNs): A review, ACM Trans. Sens. Netw. 14, 2, 50. https://doi.org/10.1145/3183338. [Google Scholar]
- Ahmad A., Kumar A., Prakash O., Aman A. (2020) Daylight availability assessment and the application of energy simulation software – A literature review, Mater. Sci. Energy Technol. 3, 679–689. https://doi.org/10.1016/J.MSET.2020.07.002. [Google Scholar]
- Akimov L., Lvov V., de Martino D., de Martino di Montegiordano D., De Mei K., Osipov N., Ostrovaia A., Krasnozhen S., Badenko V., Terleev V. (2022) Shading system design and solar gains control for buildings passive energy-efficiency improvement, in Technological Advancements in Construction, Vol. 180, Lecture Notes in Civil Engineering A. Mottaeva (ed.), Springer, Cham. https://doi.org/10.1007/978-3-030-83917-8_2. [Google Scholar]
- Alanne K., Sierla S. (2022) An overview of machine learning applications for smart buildings, Sustain. Cities Soc. 76, 103445. https://doi.org/10.1016/j.scs.2021.103445. [CrossRef] [Google Scholar]
- Amasyali K., El-Gohary N.M. (2018) A review of data-driven building energy consumption prediction studies, Renew. Sust. Energ. Rev. 81, 1192–1205. https://doi.org/10.1016/j.rser.2017.04.095. [CrossRef] [Google Scholar]
- Ayoub M. (2020) A review on machine learning algorithms to predict daylighting inside buildings, Sol. Energy 202, 249–275. https://doi.org/10.1016/j.solener.2020.03.104. [CrossRef] [Google Scholar]
- Bakker C., Aries M., Kort H., Rosemann A. (2017) Occupancy-based lighting control in open-plan office spaces: A state-of-the-art review, Build. Environ. 112, 308–321. https://doi.org/10.1016/J.BUILDENV.2016.11.042. [CrossRef] [Google Scholar]
- Bauer W.P.M., Geiginger J., Hegetschweiler W., Morel N. (1996) Delta: A blind controller using fuzzy logic. Final report, EPFL, LESO-PB, Lausanne. [Google Scholar]
- Belany P., Hrabovsky P., Kolkova Z. (2021) Combination of lighting retrofit and life cycle cost analysis for energy efficiency improvement in buildings, Energy Reports 7, 2470–2483. https://doi.org/10.1016/J.EGYR.2021.04.044. [CrossRef] [Google Scholar]
- Bellia L., Musto M., Spada G. (2011) Illuminance measurements through HDR imaging photometry in scholastic environment, Energy Build. 43, 10, 2843–2849. https://doi.org/10.1016/J.ENBUILD.2011.07.006. [CrossRef] [Google Scholar]
- Benya J., Schwartz P. (2001) Advanced lighting guidelines, New Buildings Institute, White Salmon (USA). [Google Scholar]
- Borile S., Pandharipande A., Caicedo D., Schenato L., Cenedese A. (2017) A data-driven daylight estimation approach to lighting control, IEEE Access 5, 21461–21471. https://doi.org/10.1109/ACCESS.2017.2679807. [CrossRef] [Google Scholar]
- Boyce P.R. (2010) Review: The impact of light in buildings on human health, Indoor Built Environ. 19, 1, 8–20. https://doi.org/10.1177/1420326X09358028. [CrossRef] [Google Scholar]
- Brembilla E., Mardaljevic J. (2019) Climate-based daylight modelling for compliance verification: benchmarking multiple state-of-the-art methods, Build. Environ. 158, 151–164. https://doi.org/10.1016/J.BUILDENV.2019.04.051. [CrossRef] [Google Scholar]
- Budhiyanto A., Chiou Y.-S. (2022) Prototyping a lighting control system using LabVIEW with real-time High Dynamic Range Images (HDRis) as the Luminance Sensor, Buildings 12, 5, 650. [CrossRef] [Google Scholar]
- Bughin J., Hazan E., Ramaswamy S., Chui M., Allas T., Dahlström P., Henke N., Trench M. (2017) Electric utility, in Artificial Intelligence the Next Digital Frontier, Discussion Paper, p. 47. [Google Scholar]
- Cai H. (2016) Luminance gradient for evaluating lighting, Light. Res. Technol. 48, 2, 155–175. https://doi.org/10.1177/1477153513512501. [CrossRef] [Google Scholar]
- Cai H., Chung T.M. (2011) Improving the quality of high dynamic range images, Light. Res. Technol. 43, 1, 87–102. https://doi.org/10.1177/1477153510371356. [CrossRef] [Google Scholar]
- Caicedo D., Pandharipande A. (2016) Sensor data-driven lighting energy performance prediction, IEEE Sens. J. 16, 6397–6405. https://doi.org/10.1109/JSEN.2016.2579663. [CrossRef] [Google Scholar]
- Carletti C., Cellai G., Pierangioli L., Sciurpi F., Secchi S. (2017) The influence of daylighting in buildings with parameters nZEB: Application to the case study for an office in Tuscany Mediterranean area, Energy Proc. 140, 339–350. https://doi.org/10.1016/j.egypro.2017.11.147. [CrossRef] [Google Scholar]
- Chiesa G., Di Vita D., Ghadirzadeh A., Herrera A.H.M., Rodriguez J.C.L. (2020) A fuzzy-logic IoT lighting and shading control system for smart buildings, Autom. Constr. 120, 103397. [CrossRef] [Google Scholar]
- Colaco A.M., Colaco S.G., Kurian C.P., Kini S.G. (2018) Color characterization of multicolor multichip LED luminaire for indoor, J. Build. Eng. 18, 19–32. https://doi.org/10.1016/j.jobe.2018.02.005. [CrossRef] [Google Scholar]
- Colaco S.G., Kurian C.P., George V.I., Colaco A.M. (2008) Prospective techniques of effective daylight harvesting in commercial buildings by employing window glazing, dynamic shading devices and dimming control – a literature review, Build. Simul. 1, 279–289. https://doi.org/10.1007/s12273-008-8126-8. [CrossRef] [Google Scholar]
- Colaco S.G., Kurian C.P., George V.I., Colaco A.M. (2012) Integrated design and real-time implementation of an adaptive, predictive light controller, Light. Res. Technol. 44, 4, 459–476. https://doi.org/10.1177/1477153512445713. [CrossRef] [Google Scholar]
- Coley DA, Crabb JA (1994), Computerized control of artificial light for maximum use of daylight. Light. Res. Technol., 6(4), 189–194. https://doi.org/10.1177/096032719402600403. [CrossRef] [Google Scholar]
- Crisp V.H.C. (1977) Preliminary study of automatic daylight control of artificial lighting, Light. Res. Technol. 9, 1, 31–41. https://doi.org/10.1177/096032717700900104. [CrossRef] [Google Scholar]
- Doulos L., Tsangrassoulis A., Topalis F. (2008) Quantifying energy savings in daylight responsive systems: The role of dimming electronic ballasts, Energy Build. 40, 1, 36–50. https://doi.org/10.1016/J.ENBUILD.2007.01.019. [CrossRef] [Google Scholar]
- Dounis A.I., Caraiscos C. (2009) Advanced control systems engineering for energy and comfort management in a building environment-A review, Renew. Sustain. Energy Rev. 13, 6–7, 1246–1261. https://doi.org/10.1016/j.rser.2008.09.015. [CrossRef] [Google Scholar]
- Ehrlich C., Papamichael K., Lai J., Revzan K. (2002) A method for simulating the performance of photosensor-based lighting controls, Energy Build. 34, 883–889. https://doi.org/10.1016/S0378-7788(02)00064-6. [CrossRef] [Google Scholar]
- Fernandes L.L., Lee E.S., Dibartolomeo D.L., McNeil A. (2014) Monitored lighting energy savings from dimmable lighting controls in the New York Times Headquarters Building, Energy Build. 68, 498–514. https://doi.org/10.1016/j.enbuild.2013.10.009. [CrossRef] [Google Scholar]
- Füchtenhans M., Grosse E.H., Glock C.H. (2021) Smart lighting systems: state-of-the-art and potential applications in warehouse order picking, Int. J. Prod. Res. 59, 12, 3817–3839. [CrossRef] [Google Scholar]
- Galasiu A.D., Atif M.R., MacDonald R.A. (2004) Impact of window blinds on daylight-linked dimming and automatic on/off lighting controls, Sol. Energy 76, 5, 523–544. https://doi.org/10.1016/J.SOLENER.2003.12.007. [CrossRef] [Google Scholar]
- Ghadi Y.Y., Rasul M.G., Khan M.M.K. (2016) Design and development of advanced fuzzy logic controllers in smart buildings for institutional buildings in subtropical Queensland, Renew. Sustain. Energy Rev. 54, 738–744. https://doi.org/10.1016/J.RSER.2015.10.105. [CrossRef] [Google Scholar]
- Glennie W.L., Thukral I., Rea M.S. (1992) Lighting control: Feasibility demonstration of a new type of system, Light. Res. Technol. 24, 4, 235–242. https://doi.org/10.1177/096032719202400407. [CrossRef] [Google Scholar]
- Guillemin A., Morel N. (2001) An innovative lighting controller integrated in a self-adaptive building control system, Energy Build. 33, 5, 477–487. https://doi.org/10.1016/S0378-7788(00)00100-6. [CrossRef] [Google Scholar]
- Guillemin A., Morel N. (2002) Experimental results of a self-adaptive integrated control system in buildings: a pilot study, Sol. Energy 72, 397–403. https://doi.org/10.1016/S0038-092X(02)00015-4. [CrossRef] [Google Scholar]
- Gunay H.B., O’Brien W., Beausoleil-Morrison I., Gilani S. (2017) Development and implementation of an adaptive lighting and blinds control algorithm, Build. Environ. 113, 185–199. https://doi.org/10.1016/j.buildenv.2016.08.027. [CrossRef] [Google Scholar]
- Harish V.S.K.V., Kumar A. (2016) A review on modeling and simulation of building energy systems, Renew. Sustain. Energy Rev. 56, 1272–1292. https://doi.org/10.1016/j.rser.2015.12.040. [CrossRef] [Google Scholar]
- Huchuk B., Gunay H.B., O’Brien W., Cruickshank C.A. (2016) Model-based predictive control of office window shades, Build. Res. Inform. 44, 445–455. https://doi.org/10.1080/09613218.2016.1101949. [CrossRef] [Google Scholar]
- Humann C., McNei A. (2017) Using HDR sky luminance maps to improve accuracy of virtual work plane illuminance sensors, in: Building Simulation Conference Proceedings, San Francisco, CA, USA, pp. 1740–1748. [Google Scholar]
- Huovila P., Tuominen M., Airaksinen M (2017) Effects of building occupancy on indicators of energy efficiency, Energies 10, 5, 628. https://doi.org/10.3390/en10050628. [CrossRef] [Google Scholar]
- Inanici M. (2006) Evaluation of high dynamic range photography as a luminance data acquisition system, Light. Res. Technol. 38, 2, 123–134. https://doi.org/10.1191/1365782806li164oa. [CrossRef] [Google Scholar]
- Iwata T., Taniguchi T., Sakuma R. (2017) Automated blind control based on glare prevention with dimmable light in open-plan offices, Build. Environ. 113, 232–246. https://doi.org/10.1016/J.BUILDENV.2016.08.034. [CrossRef] [Google Scholar]
- Jain S., Garg V. (2018) A review of open loop control strategies for shades, blinds and integrated lighting by use of real-time daylight prediction methods, Build. Environ. 135, 352–364. https://doi.org/10.1016/j.buildenv.2018.03.018. [CrossRef] [Google Scholar]
- Jin M.L., Ho M.C. (2009) Labview-based fuzzy controller design of a lighting control system, J. Marine Sci. Technol. 17, 2, 13–17. https://doi.org/10.51400/2709-6998.1965. [Google Scholar]
- Kandasamy N.K., Karunagaran G., Spanos C., Tseng K.J., Soong B.H. (2018) Smart lighting system using ANN-IMC for personalized lighting control and daylight harvesting, Build. Environ. 139, 170–180. https://doi.org/10.1016/J.BUILDENV.2018.05.005. [CrossRef] [Google Scholar]
- Kim C.H., Kim K.S. (2019) Development of sky luminance and daylight illuminance prediction methods for lighting energy saving in office buildings, Energies 12, 4, 592. https://doi.org/10.3390/en12040592. [CrossRef] [Google Scholar]
- Kim M., Tzempelikos A. (2021) Non-intrusive luminance mapping via high dynamic range imaging and 3-D reconstruction, J. Phys. Conf. Ser. 2042 1, IOP Publishing. [Google Scholar]
- Kim M., Konstantzos I., Tzempelikos A. (2020) Real-time daylight glare control using a low-cost, window-mounted HDRI sensor, Build. Environ. 177, 106912. [CrossRef] [Google Scholar]
- Kruisselbrink T., Dangol R., van Loenen E. (2019) Ceiling-based luminance measurements: a feasible solution?, in :Conference: Proceedings of the 29th Quadrennial Session of the CIE, Washington DC, USA, pp. 166–1174. [Google Scholar]
- Kruisselbrink T.W., Dangol R., van Loenen E.J. (2020) Feasibility of ceiling-based luminance distribution measurements, Building and Environment 172, 106699. https://doi.org/10.1016/J.BUILDENV.2020.106699. [CrossRef] [Google Scholar]
- Kubba S. (2017) Components of sustainable design and construction, in: Handbook of Green Building Design and Construction: LEED, BREEAM, and Green Globes, 2nd edn., Elsevier BH, pp. 55–110. https://doi.org/10.1016/b978-0-12-810433-0.00002-2. [Google Scholar]
- Kurian C.P., Aithal R.S., Bhat J., George V.I. (2008) Robust control and optimization of energy consumption in daylight-artificial light integrated schemes, Light. Res. Technol. 40 1, 7–24. https://doi.org/10.1177/1477153507079511. [CrossRef] [Google Scholar]
- Le K., Bourdais R., Guéguen H. (2014) From hybrid model predictive control to logical control for shading system: A support vector machine approach, Energy Build. 84, 352–359. https://doi.org/10.1016/j.enbuild.2014.07.084. [CrossRef] [Google Scholar]
- Liu J., Zhang W., Chu X., Liu Y. (2016) Fuzzy logic controller for energy savings in a smart LED lighting system considering lighting comfort and daylight, Energy Build. 127, 95–104. [CrossRef] [Google Scholar]
- Lolli N., Nocente A., Brozovsky J., Woods R., Grynning S. (2019) Automatic vs manual control strategy for window blinds and ceiling lights: Consequences to perceived visual and thermal discomfort, J. Daylighting 6, 2, 112–123. https://doi.org/10.15627/jd.2019.11. [CrossRef] [Google Scholar]
- Luo Z., Sun C., Dong Q., Qi X. (2022) Key control variables affecting interior visual comfort for automatedlouver control in open-plan office – a study using machine learning, Build. Environ. 7, 207, 108565. https://doi.org/10.1016/j.buildenv.2021.108565. [CrossRef] [Google Scholar]
- Madias E.N.D., Doulos L.T., Kontaxis P.A., Topalis F.V. (2022) Multicriteria decision aid analysis for theoptimum performance of an ambient light sensor: methodology and case study, Oper. Res. 22, 1333–136. https://doi.org/10.1007/s12351-020-00575-5. [Google Scholar]
- Magno M., Polonelli T., Benini L., Popovici E. (2015) A low cost, highly scalable wireless sensor network solution to achieve smart LED light control for green buildings, IEEE Sens. J. 15, 5, 2963–2973. https://doi.org/10.1109/JSEN.2014.2383996. [CrossRef] [Google Scholar]
- Mardaljevic J. (2012) Daylight, indoor illumination and human behavior, in: Encycl. Sustainability Science &. Technology, Springer, New York, pp. 2804–2846. https://doi.org/10.1007/978-1-4419-0851-3_456. [CrossRef] [Google Scholar]
- Mardaljevic J. (2015) Climate-based daylight modelling and its discontents, London, United Kingdom. https://hdl.handle.net/2134/19993. [Google Scholar]
- Mathew V., Kurian C.P., Augustine N. (2022) Spectral, visual, thermal, energy and circadian assessment of PDLC glazing in warm and humid climate, Sol. Energy 241, 576–583. https://doi.org/10.1016/j.solener.2022.06.044. [CrossRef] [Google Scholar]
- Mavromatidis L.E., Marsault X., Lequay H. (2014) Daylight factor estimation at an early design stage to reduce buildings’ energy consumption due to artificial lighting: A numerical approach based on Doehlert and Box-Behnken designs, Energy 65, 488–502. https://doi.org/10.1016/j.energy.2013.12.028. [CrossRef] [Google Scholar]
- Mead A., Mosalam K. (2017) Ubiquitous luminance sensing using the Raspberry Pi and Camera Module system, Light. Res. Technol. 49, 7, 904–921. https://doi.org/10.1177/1477153516649229. [CrossRef] [Google Scholar]
- Moeck M., Anaokar S. (2006) Illuminance analysis from high dynamic range images, LEUKOS: The Journal of the Illuminating Engineering Society of North America 2, 3, 211–228. https://doi.org/10.1582/LEUKOS.2006.02.03.005. [CrossRef] [Google Scholar]
- Newsham G.R., Arsenault C. (2009) A camera as a sensor for lighting and shading control, Light. Res. Technol. 41, 2, 143–163. https://doi.org/10.1177/1477153508099889. [CrossRef] [Google Scholar]
- Ngarambe J., Adilkhanova I., Uwiragiye B., Yun G.Y. (2022) A review on the current usage of machine learning tools for daylighting design and control, Build. Environ. 223, 109507. https://doi.org/10.1016/j.buildenv.2022.109507. [CrossRef] [Google Scholar]
- Oh M., Park J., Roh S., Lee C. (2018) Deducing the optimal control method for electrochromic triple glazing through an integrated evaluation of building energy and daylight performance, Energies 11, 9, 2205. https://doi.org/10.3390/en11092205. [CrossRef] [Google Scholar]
- Pandharipande A., Caicedo D. (2015) Smart indoor lighting systems with luminaire-based sensing: A review of lighting control approaches, Energy Build. 104, 369–377. https://doi.org/10.1016/J.ENBUILD.2015.07.035. [CrossRef] [Google Scholar]
- Pandharipande A., Newsham G. (2018) Lighting controls: Evolution and revolution, Light. Res. Technol. 50, 1, 115–128. https://doi.org/10.1177/1477153517731909. [CrossRef] [Google Scholar]
- Panjaitan S.D., Hartoyo A. (2011) A lighting control system in buildings based on fuzzy logic, Telkomnika 9, 3, 423–432. https://doi.org/10.12928/telkomnika.v8i3.732. [CrossRef] [Google Scholar]
- Paone A., Bacher J.P. (2018) The impact of building occupant behavior on energy efficiency and methods to influence it: A review of the state of the art, Energies 11, 4, 953. https://doi.org/10.3390/en11040953. [CrossRef] [Google Scholar]
- Papinutto M., Boghetti R., Colombo M., Basurto C., Reutter K., Lalanne D., Kämpf J.H., Nembrini J. (2022) Saving energy by maximising daylight and minimising the impact on occupants: An automatic lighting system approach, Energy Build. 268, 112176. https://doi.org/10.1016/j.enbuild.2022.112176. [CrossRef] [Google Scholar]
- Pierson C., Cauwerts C., Bodart M., Wienold J. (2021) Tutorial: Luminance maps for daylighting studies from high dynamic range photography, LEUKOS – Journal of Illuminating Engineering Society of North America 17, 2, 140–169. https://doi.org/10.1080/15502724.2019.1684319. [CrossRef] [Google Scholar]
- Putrada A.G., Abdurohman M., Perdana D., Nuha H.H. (2022) Machine learning methods in smart lighting toward achieving user comfort: a survey, IEEE Access 10, 45137–45178. https://doi.org/10.1109/ACCESS.2022.3169765. [CrossRef] [Google Scholar]
- Reinhart C.F., Voss K. (2003) Monitoring manual control of electric lighting and blinds, Light. Res. Technol. 35, 3, 243–258. https://doi.org/10.1191/1365782803li064oa. [CrossRef] [Google Scholar]
- Rubinstein F., Siminovitch M., Verderber R. (1993) Fifty percent energy savings with automatic lighting controls, IEEE Trans. Indus. Appl. 29, 4, 768–773. https://doi.org/10.1109/28.231992. [CrossRef] [Google Scholar]
- Sadeghi S.A., Awalgaonkar N.M., Karava P., Bilionis I. (2017) A Bayesian modeling approach of human interactions with shading and electric lighting systems in private offices, Energy Build. 134, 2, 185–201. https://doi.org/10.1016/j.enbuild.2016.10.046. [CrossRef] [Google Scholar]
- Samiou A.I., Doulos L.T., Zerefos S. (2022) Daylighting and artificial lighting criteria that promote performance and optical comfort in preschool classrooms, Energy Build. 258, 111819. https://doi.org/10.1016/j.enbuild.2021.111819. [CrossRef] [Google Scholar]
- Sanjeev Kumar T., Kurian C.P., Shetty S. (2020a) A data-driven approach for the control of a daylight–artificial light integrated scheme, Light. Res. Technol. 52, 2, 292–313. https://doi.org/10.1177/1477153519841104. [CrossRef] [Google Scholar]
- Sanjeev Kumar T.M., Kurian C.P., Varghese S.G. (2020b) Ensemble learning model-based test workbench for the optimization of building energy performance and occupant comfort, IEEE Access 8, 96075–96087. https://doi.org/10.1109/ACCESS.2020.2996546. [CrossRef] [Google Scholar]
- Sarkar A., Fairchild M., Salvaggio C. (2008) Integrated daylight harvesting and occupancy detection using digital imaging, in: Proc. SPIE 6816, Sensors, Cameras, and Systems for Industrial/Scientific Applications IX, 68160F. https://doi.org/10.1117/12.765961. [Google Scholar]
- Sarkar A., Mistrick R.G. (2006) A novel lighting control system integrating high dynamic range imaging and DALI, LEUKOS 2, 4, 307–322. https://doi.org/10.1080/15502724.2006.10747642. [CrossRef] [Google Scholar]
- Seo J., Choi A., Sung M. (2021) Recommendation of indoor luminous environment for occupants using big data analysis based on machine learning, Building and Environment 198, 107835. https://doi.org/10.1016/j.buildenv.2021.107835. [CrossRef] [Google Scholar]
- Seyedolhosseini A., Masoumi N., Modarressi M., Karimian N. (2020) Daylight adaptive smart indoor lighting control method using artificial neural networks, J. Build. Eng. 29, 101141. https://doi.org/10.1016/j.jobe.2019.101141. [CrossRef] [Google Scholar]
- Shen H., Tzempelikos A. (2017) Daylight-linked synchronized shading operation using simplified model-based control, Energy Build. 145, 200–212. https://doi.org/10.1016/j.enbuild.2017.04.021. [CrossRef] [Google Scholar]
- Spasojević B., Mahdavi A. (2007) Calibrated sky luminance maps for advanced daylight simulation applications, in: BS2007 Proceedings of the 10th International Building Performance Simulation Association Conference and Exhibition, Beijing, China, pp. 1205–1210. [Google Scholar]
- Sudheer Kumar T.S., Kurian C.P., Shama K., Shailesh K.R. (2018) High dynamic imaging for photometry and graphic arts evaluation , J. Inst. Eng. (India): B 99, 383–389. https://doi.org/10.1007/s40031-018-0327-7. [CrossRef] [Google Scholar]
- Sudheer Kumar T.S., Kurian C.P., Varghese S.G. (2015) High dynamic range imaging system for energy optimization in daylight – artificial light integrated scheme, Int. J. Renew. Energy Res. 5, 2, 435–442. [Google Scholar]
- Suk J.Y. (2019) Luminance and vertical eye illuminance thresholds for occupants’ visual comfort in daylit office environments, Build. Environ. 148, 107–115. https://doi.org/10.1016/j.buildenv.2018.10.058. [CrossRef] [Google Scholar]
- Tan S.Y., Jacoby M., Saha H., Florita A., Henze G., Sarkar S. (2022a) Multimodal sensor fusion framework for residential building occupancy detection, Energy Build. 258, 111828. https://doi.org/10.1016/j.enbuild.2021.111828. [CrossRef] [Google Scholar]
- Tan Y., Chen P., Shou W., Sadick A.M. (2022b) Digital Twin-driven approach to improving energy efficiency of indoor lighting based on computer vision and dynamic BIM, Energy Build. 270, 112271. https://doi.org/10.1016/j.enbuild.2022.112271. [CrossRef] [Google Scholar]
- Tran D., Tan Y.K. (2014) Sensorless illumination control of a networked LED-lighting system using feedforward neural network, IEEE Trans. Indus. Electron. 61, 4, 2113–2121. https://doi.org/10.1109/TIE.2013.2266084. [CrossRef] [Google Scholar]
- Trobec Lah M., Zupančič B., Peternelj J., Krainer A. (2006) Daylight illuminance control with fuzzy logic, Sol. Energy 80, 307–321. https://doi.org/10.1016/j.solener.2005.02.002. [CrossRef] [Google Scholar]
- Tyukhova Y.L. (2014) An assessment of high dynamic range luminance measurements with LED lighting, LEUKOS 10, 2, 87–99. https://doi.org/10.1080/15502724.2014.861279. [CrossRef] [Google Scholar]
- ul Haq M.A., Hassan M.Y., Abdullah H., Rahman H.A., Abdullah M.P., Hussin F., Said D.M. (2014) A review on lighting control technologies in commercial buildings, their performance and affecting factors, Renew. Sustain. Energy Rev. 33, 268–279. [CrossRef] [Google Scholar]
- US Department of Energy (2015) Quadrennial technology review: an assessment of energy technologies and research opportunities. Available at: https://www.energy.gov/quadrennial-technology-review-2015. [Google Scholar]
- Varghese S.G., Kurian C.P., Joseph C. (2022) Wireless sensor actuator network architecture and energy model of a camera based lighting management system, IEEE Access 10, 22700–22711. https://doi.org/10.1109/ACCESS.2022.3154587. [CrossRef] [Google Scholar]
- Varghese S.G., Kurian C.P., George V.I., Varghese M., Sanjeev Kumar T.S. (2019a) Climate model based test workbench for daylight-artificial light integration, Light. Res. Technol. 51, 5, 774–787. https://doi.org/10.1177/1477153518792586. [CrossRef] [Google Scholar]
- Varghese S.G., Kurian C.P., George V.I., Kumar T.S.S. (2019b) Daylight-artificial light integrated scheme based on digital camera and wireless networked sensing-actuation system, IEEE Trans. Consumer Electron. 65, 3, 284–292. https://doi.org/10.1109/TCE.2019.2924078. [CrossRef] [Google Scholar]
- Varghese S.G., Kurian C.P., George V.I., Sudheer Kumar T.S. (2018) Control and evaluation of room interior lighting using digital camera as the sensor, Int. J. Eng. Technol. 7, 2.21, 99–105. https://doi.org/10.14419/ijet.v7i2.21.11844. [CrossRef] [Google Scholar]
- Wagiman K.R., Abdullah M.N. (2018) Intelligent lighting control system for energy savings in office building, Indonesian J. Electric. Eng. 11, 195–202. https://doi.org/10.11591/ijeecs.v11.i1.pp195-202. [Google Scholar]
- Wagiman K.R., Abdullah M.N., Hassan M.Y., Mohammad Radzi N.H., Abu Bakar A.H., Kwang T.C. (2020) Lighting system control techniques in commercial buildings: Current trends and future directions, J. Build. Eng. 31, 101342. https://doi.org/10.1016/J.JOBE.2020.101342. [CrossRef] [Google Scholar]
- Wei Y., Zhang X., Shi Y., Xia L., Pan S., Wu J., Han M., Zhao X. (2018) A review of data-driven approaches for prediction and classification of building energy consumption, Renew. Sustain. Energy Rev. 82, 1027–1047. https://doi.org/10.1016/j.rser.2017.09.108. [CrossRef] [Google Scholar]
- Wuller D., Gabele H. (2007) The usage of digital cameras as luminance meters, in: Proc. SPIE 6502, Digital Photography III 65020U. https://doi.org/10.1117/12.703205. [Google Scholar]
- Xie J., Sawyer A.O. (2021) Simulation-assisted data-driven method for glare control with automated shading systems in office buildings, Build. Environ. 196, 107801. https://doi.org/10.1016/j.buildenv.2021.107801. [CrossRef] [Google Scholar]
- Xiong J., Tzempelikos A. (2016) Model-based shading and lighting controls considering visual comfort and energy use, Sol. Energy 134, 416–428. https://doi.org/10.1016/j.solener.2016.04.026. [CrossRef] [Google Scholar]
- Yeon S., Yu B., Seo B., Yoon Y., Lee K.H. (2019) ANN based automatic slat angle control of venetian blind for minimized total load in an office building, Sol. Energy 180, 133–145. https://doi.org/10.1016/j.solener.2019.01.027. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.