Open Access
Numéro |
Sci. Tech. Energ. Transition
Volume 78, 2023
|
|
---|---|---|
Numéro d'article | 19 | |
Nombre de pages | 14 | |
DOI | https://doi.org/10.2516/stet/2023015 | |
Publié en ligne | 10 août 2023 |
- Joshi A.S., Dincer I., Reddy B.V. (2009) Performance analysis of photovoltaic systems: a review, Renew. Sustain. Energy Rev. 13, 8, 1884–1897. [CrossRef] [Google Scholar]
- Sreenath S., Sudhakar K., Yusop A.F. (2021) 7E analysis of a conceptual utility-scale land-based solar photovoltaic power plant, Energy 219, 119610. [CrossRef] [Google Scholar]
- Joshi A.S., Dincer I., Reddy B.V. (2009) Thermodynamic assessment of photovoltaic systems, Sol. Energy, 83, 8, 1139–1149. [CrossRef] [Google Scholar]
- World Commission on Environment and Development (WCED) (1987) Our common future, Oxford University Press, Oxford and New York, pp. 17–25. [Google Scholar]
- Tsatsaronis G. (2007) Definitions and nomenclature in exergy analysis and exergoeconomics, Energy 32, 4, 249–253. [CrossRef] [Google Scholar]
- Sahin A.D., Dincer I., Rosen M.A. (2007) Thermodynamic analysis of solar photovoltaic cell systems, Sol. Energy Mater. Sol. Cells 91, 2–3, 153–159. [CrossRef] [Google Scholar]
- Pandey A.K., Tyagi V.V., Tyagi S.K. (2013) Exergetic analysis and parametric study of multi-crystalline solar photovoltaic system at a typical climatic zone, Clean Technol. Environ. Policy 15, 333–343. [CrossRef] [Google Scholar]
- Aoun N., Nahman B., Chenni R. (2014) Study of experimental energy and exergy of mono-crystalline PV panel in Adrar Region, Algeria, Int. J. Sci. Eng. Res. 5, 10, 585–589. [Google Scholar]
- Sudhakar K., Srivastava T. (2014) Energy and aexergy analysis of 36 W solar photovoltaic modüle, Int. J. Ambient Energy 35, 1, 51–57. [CrossRef] [Google Scholar]
- Pandey A.K., Pant P.C., Sastry O.S., Kumar A., Tyagi S.K. (2015) Energy and exergy performance evaluatıon of a typical solar photovoltaic modüle, Therm. Sci. 19, 2, 625–636. [CrossRef] [Google Scholar]
- Sukumaran S., Sudhakar K. (2018) Performance analysis of solar powered airport based on energy and exergy analysis, Energy 149, 1000–1009. [CrossRef] [Google Scholar]
- Bayat M., Ozalp M. (2018). Energy, exergy and exergoeconomic analysis of a solar photovoltaic module, in: Dincer I., Ozgur Colpan C. and Kizilkan O. (eds), Exergetic, Energetic and Environmental Dimensions. Academic Press, pp. 383–402, 398, 399. [CrossRef] [Google Scholar]
- Bayrak F., Oztop H.F., Selimefendigil F. (2019) Effects of different fin parameters on temperature and efficiency for cooling of photovoltaic panels under natural convection, Sol. Energy 188, 484–494. [CrossRef] [Google Scholar]
- Kumar M., Chandel S.S., Kumar A. (2020) Performance analysis of a 10 MWp utility scale grid-connected canal top photovoltaic power plant under Indian climatic conditions, Energy 204, 1–13. [Google Scholar]
- Sreenath S., Sudhakar K., Yusop A.F. (2021) Energy-exergy-economic-environmental-energo-exergo-enviroecono (7E) analysis of solar photovoltaic power plant: a case study of 7 airport sites in India, Sustain. Energy Technol. Assess. 47, 1–18. [Google Scholar]
- Manjunath C., Reddy J., Sai Ranjith Reddy K., Ganesh Kumar I.R., Sanketh S. (2022) Energy, exergy performance and analysis of 50w solar photovoltaic modüle, Mater. Today: Proc. 54, 2, 531–536. [CrossRef] [Google Scholar]
- Kuczynski W., Chliszcz K. (2023) Energy and exergy analysis of photovoltaic panels in northern Poland, Renewable Sustain. Energy Rev. 174, 113138. [CrossRef] [Google Scholar]
- Bayat M., Ozalp M. (2017) in Energy, exergy and exergoeconomic analysis of a solar photovoltaic module, in: I. Dincer, O.C. Colpan, O. Kizilkan (eds), Exergetic Energetic and Environmental Dimensions, Academic Press, Cambridge, pp. 383–401. [Google Scholar]
- Joshi A.S., Dincer I. and Reddy V. (2009) Performance analysis of photovoltaic systems: a review. Renewable Sustain. Energy Rev. 13, 8, 1888–1893. [Google Scholar]
- Jeter S.M. (1981) Maximum conversion efficiency for the utilization of direct solar radiation, Sol. Energy 26, 3, 231–236. [CrossRef] [Google Scholar]
- Holmberg J., Flynn C., Portinari L. (2006) The colours of the sun, Mon. Not. R. Astron. Soc. 367, 2, 449–453. [CrossRef] [Google Scholar]
- Cornelissen R..L (1997). Thermodynamics and sustainable development, Ph.D. Thesis, University of Twente, The Netherlands, 150 p. [Google Scholar]
- Rosen M.A., Dincer I., Kanoglu M. (2008) Role of exergy in increasing efficiency and sustainability and reducing environmental impact, Energy Pol. 36, 1, 135. [Google Scholar]
- Rosen M.A., Dincer I. (2003) Exergy-cost-energy-mass analysis of thermal system and processes, Energy Convers. Manag. 44, 10, 1640. [Google Scholar]
- Dincer I., Rosen M.A. (2012) Exergy: energy, environment and sustainable development, Newnes, ABD, 399 p. [Google Scholar]
- Dincer I., Rosen M.A. (2013) Exergoeconomic analysis of thermal systems, in: Exergy, Energy, Environment and Sustainable Development, 2nd edn., Elsevier, Amsterdam, 399 p. [Google Scholar]
- Kandilli C. (2019) A comparative study on the energetic–exergetic and economical performance of a photovoltaic thermal system (PVT), Res. Eng. Struct. Mater. 1, 75–89. [Google Scholar]
- Barbosa de Melo K., Kitayama da Silva M., Lucas de Souza Silva J., Costa T.S., Villalva M.G. (2022) Study of energy improvement with the insertion of bifacial modules and solar trackers in photovoltaic modules and solar trackers in photovoltaic installations in Brazil, Renewable Energy Focus 41, 186. [Google Scholar]
- Pelaez S.A., Deline C., Greenberg P., Stein J.S., Kostuk R.K. (2019) Model and Validation of Single-Axis Tracking With Bifacial PV, IEEE J. Photovolt. 9, 715. [CrossRef] [Google Scholar]
- İzgi E., Akkaya Y.E. (2012) Exergoeconomic analysis of a solar photovoltaic system in İstanbul, Tübitak, Turkey, pp. 350–359. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.