Numéro |
Sci. Tech. Energ. Transition
Volume 79, 2024
Power Components For Electric Vehicles
|
|
---|---|---|
Numéro d'article | 13 | |
Nombre de pages | 10 | |
DOI | https://doi.org/10.2516/stet/2024008 | |
Publié en ligne | 8 mars 2024 |
Regular Article
Study on the impact of uncertain design parameters on the performances of a permanent magnet-assisted synchronous reluctance motor
1
IFP Energies nouvelles, Institut Carnot IFPEN Transports Energie, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France
2
Paris Saclay University, CNRS, SATIE, Gif-sur-Yvette, France
3
CY Cergy Paris University, CNRS, SATIE, Cergy, France
* Corresponding author: adan.reyes-reyes@ifpen.fr
Received:
15
September
2023
Accepted:
29
January
2024
In this paper, deterministic and robust design optimizations of a permanent magnet-assisted synchronous reluctance motor were performed to study the impact of different uncertain input parameters on the design. These optimizations were carried out using a surrogate model based on 2-D finite element simulations. Different robust optimizations considering geometric and magnetic uncertain parameters were compared to the deterministic optimization. It was noticed that both geometrical and magnetic properties tolerances greatly impact the machines’ mean torque and torque ripple, whereas the magnetic properties tolerances had a more significant impact on the mean torque. In such a case, robust optimization is essential to find optimal and robust electric motor designs.
Key words: Synchronous machines / Robust design optimization / Manufacturing uncertainties / Surrogate models / Finite element analysis
© The Author(s), published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.