Open Access
Issue |
Sci. Tech. Energ. Transition
Volume 79, 2024
Power Components For Electric Vehicles
|
|
---|---|---|
Article Number | 13 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.2516/stet/2024008 | |
Published online | 08 March 2024 |
- Levent A.H., Lordoglu A., Aydeniz M.G. (2020) Design and optimization of permanent magnet synchronous motor for electric vehicle applications, in 2nd Global Power Energy and Communication Conference (GPECOM), Izmir, Turkey, pp. 148–151. https://doi.org/10.1109/GPECOM49333.2020.9247885. [Google Scholar]
- Choi G., Bramerdorfer G. (2022) Comprehensive design and analysis of an interior permanent magnet synchronous machine for light-duty passenger EVs, IEEE Access 10, 819–831. https://doi.org/10.1109/ACCESS.2021.3137897. [CrossRef] [Google Scholar]
- Balasubramanian L., Bhuiyan N.A., Javied A., Fahmy A.A., Belblidia F., Sienz J. (2023) Design and optimization of interior permanent magnet (IPM) motor for electric vehicle applications, CES Trans. Electr. Mach. Syst. 7, 2, 202–209. https://doi.org/10.30941/CESTEMS.2023.00021. [CrossRef] [Google Scholar]
- Zhu X., Xiang Z., Zhang C., Quan L., Du Y., Gu W. (2017) Co-reduction of torque ripple for outer rotor flux-switching PM motor using systematic multi-level design and control schemes, IEEE Trans. Ind. Electron. 64, 2, 1102–1112. [CrossRef] [Google Scholar]
- Sun X., Wan B., Lei G., Tian X., Guo Y., Zhu J. (2021) Multiobjective and multiphysics design optimization of a switched reluctance motor for electric vehicle applications, IEEE Trans. Energy Convers. 36, 4, 3294–3304. [CrossRef] [Google Scholar]
- Faltakh N., Hlioui S., Gabsi M., Benlamine R., Vangraefschèpe F. (2017) Design of a low permanent magnet mass hybrid excited flux switching machine for a PHEV application, in 15th International Conference on Electrical Machines, Drives and Power Systems (ELMA), Sofia, Bulgaria, pp. 271–276. https://doi.org/10.1109/ELMA.2017.7955447. [Google Scholar]
- Cisse K.M., Hlioui S., Belhadi M., Mermaz Rollet G., Gabsi M., Cheng Y. (2021) Design optimization of multi-layer permanent magnet synchronous machines for electric vehicle applications, Energies 14, 7116. https://doi.org/10.3390/en14217116. [CrossRef] [Google Scholar]
- Ren Z., Zhang D., Koh C.S. (2013) A new sensitivity-based reliability calculation algorithm in the optimal design of electromagnetic devices, J. Electr. Eng. Technol. 8, 2, 331–338. [CrossRef] [Google Scholar]
- Yang Y., Zhang C., Bramerdorfer G., Bianchi N., Qu J., Zhao J., Zhang S. (2022) A computationally efficient surrogate model based robust optimization for permanent magnet synchronous machines, IEEE Trans. Energy Convers. 37, 3, 1520–1532. [Google Scholar]
- Ren Z., Zhang D., Koh C.S. (2013) New reliability-based robust design optimization algorithms for electromagnetic devices utilizing worst case scenario approximation, IEEE Trans. Magn. 49, 5, 2137–2140. [CrossRef] [Google Scholar]
- Liang J., Mourelatos Z.P., Tu J. (2007) A single-loop method for reliability-based design optimization, J. Mech. Des. 129, 12, 1215–1224. [CrossRef] [Google Scholar]
- Lei G., Bramerdorfer G., Liu C., Guo Y., Zhu J. (2021) Robust design optimization of electrical machines: a comparative study and space reduction strategy, IEEE Trans. Energy Convers. 36, 1, 300–313. [CrossRef] [Google Scholar]
- Wu J., Zhu X., Fan D., Xiang Z., Xu L., Quan L. (2022) Robust optimization design for permanent magnet machine considering magnet material uncertainties, IEEE Trans. Magn. 58, 2, 1–7. [Google Scholar]
- Jang G.U., Kim C.W., Bae D., Cho Y., Lee J.J., Cho S. (2020) Reliability-based robust design optimization for torque ripple reduction considering manufacturing uncertainty of interior permanent magnet synchronous motor, J. Mech. Sci. Technol. 34, 3, 1249–1256. [CrossRef] [Google Scholar]
- Crozier R., Mueller M. (2016) A new MATLAB and octave interface to a popular magnetics finite element code, in Proc. – 2016 22nd International Conference on Electrical Machines ICEM, pp. 1251–1256. https://doi.org/10.1109/ICELMACH.2016.7732685. [Google Scholar]
- Pronzato L., Müller W.G. (2012) Design of computer experiments: space filling and beyond, Stat. Comput. 22, 3, 681–701. [CrossRef] [MathSciNet] [Google Scholar]
- Park H.J., Yeo H.K., Jung S.Y., Chung T.K., Ro J.S., Jung H.K. (2018) A robust multimodal optimization algorithm based on a sub-division surrogate model and an improved sampling method, IEEE Trans. Magn. 54, 3, 1–4. [Google Scholar]
- Sun X., Wan B., Lei G., Tian X., Guo Y., Zhu J. (2021) Multiobjective and multiphysics design optimization of a switched reluctance motor for electric vehicle applications, IEEE Trans. Energy Convers. 36, 4, 3294–3304. [CrossRef] [Google Scholar]
- Deb K., Pratap A., Agarwal S., Meyarivan T. (2002) A fast and elitist multiobjective genetic algorithm: a fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6, 2, 182–197. [CrossRef] [Google Scholar]
- Lei G., Bramerdorfer G., Ma B., Guo Y., Zhu J. (2021) Robust design optimization of electrical machines: multi-objective approach, IEEE Trans. Energy Convers. 36, 1, 375–401. [Google Scholar]
- Kennedy J., Eberhart R. (1995) Particle swarm optimization, in Proceedings of ICNN’95 – International Conference on Neural Networks, Perth, WA, Australia, 27 Nov.–1 Dec. 1995, pp. 1942–1948. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.