Issue
Sci. Tech. Energ. Transition
Volume 80, 2025
Decarbonizing Energy Systems: Smart Grid and Renewable Technologies
Article Number 2
Number of page(s) 13
DOI https://doi.org/10.2516/stet/2024090
Published online 17 December 2024
  • Guddanti K.P., Ye Y., Chongfuangprinya P., Yang B., Weng Y. (2020) Better data structures for co-simulation of distribution system with GridLAB-D and Python, in: 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2–6 August, IEEE, pp. 1–5. [Google Scholar]
  • Zhao Y., Zhang H., Ding Y., Zeng S., Ma L., Wang Z. (2024) Economic dispatch of community-integrated energy system considering demand-side coordinated response, Sci. Tech. Energ. Transition 79, 25. [CrossRef] [Google Scholar]
  • Yuan J., Weng Y., Tan C.-W. (2022) Determining maximum hosting capacity for PV systems in distribution grids, Int. J. Electr. Power Energy Syst 135, 107342. [CrossRef] [Google Scholar]
  • IEA and AIE (2019) Renewables 2019: Analysis and forecasts to 2024, International Energy Agency; Agence internationale de l’énergie. [Google Scholar]
  • Saurabh S., Kumar R. (2024) Optimizing PV integration: addressing energy fluctuations through BIPV and rooftop PV synergy, Sci. Tech. Energ. Transition 79, 6. [CrossRef] [Google Scholar]
  • IRENA (2019) Future of solar photovoltaic: deployment, investment, technology, grid integration and socio-economic aspects (A Global Energy Transformation: paper), International Renewable Energy Agency, Abu Dhabi. [Google Scholar]
  • Fatima S., Püvi V., Lehtonen M. (2020) Review on the PV hosting capacity in distribution networks, Energies 13, 18, 4756. [CrossRef] [Google Scholar]
  • Gupta R., Sossan F., Paolone M. (2021) Countrywide PV hosting capacity and energy storage requirements for distribution networks: the case of Switzerland, Appl. Energy 281, 116010. [CrossRef] [Google Scholar]
  • Balal A., Pakzad Jafarabadi Y., Demir A., Igene M., Giesselmann M., Bayne S. (2023) Forecasting solar power generation utilizing machine learning models in lubbock, Emerg. Sci. J. 7, 4, 1052–1062. [CrossRef] [Google Scholar]
  • Mousa H.H.H., Mahmoud K., Lehtonen M. (2024) A comprehensive review on recent developments of hosting capacity estimation and optimization for active distribution networks, IEEE Access 12, 18545–18593. [CrossRef] [Google Scholar]
  • Koirala A., Van Acker T., D’hulst R., Van Hertem D. (2022) Hosting capacity of photovoltaic systems in low voltage distribution systems: a benchmark of deterministic and stochastic approaches, Renew. Sustain. Energy Rev. 155, 111899. [CrossRef] [Google Scholar]
  • Jani A., Karimi H., Jadid S. (2022) Two-layer stochastic day-ahead and real-time energy management of networked microgrids considering integration of renewable energy resources, Appl. Energy 323, 119630. [CrossRef] [Google Scholar]
  • Wu H., Yuan Y., Zhu J., Xu Y. (2022) Assessment model for distributed wind generation hosting capacity considering complex spatial correlations, J. Mod. Power Syst. Clean Energy 8, 5, 1194–1206. [CrossRef] [Google Scholar]
  • Han C., Lee D., Song S., Jang G. (2022) Probabilistic assessment of PV hosting capacity under coordinated voltage regulation in unbalanced active distribution networks, IEEE Access 10, 35578–35588. [CrossRef] [Google Scholar]
  • Lima E.J., Freitas L.C.G. (2022) Hosting capacity calculation deploying a hybrid methodology: a case study concerning the intermittent nature of photovoltaic distributed generation and the variable nature of energy consumption in a medium voltage distribution network, Energies 15, 3, 1223. [CrossRef] [Google Scholar]
  • Taheri S., Jalali M., Kekatos V., Tong V. (2021) Fast probabilistic hosting capacity analysis for active distribution systems, IEEE Trans. Smart Grid 12, 3, 2000–2012. [CrossRef] [Google Scholar]
  • Yao H., Qin W., Jing X., Zhu Z., Wang K., Han X., Wang P. (2022) Possibilistic evaluation of photovoltaic hosting capacity on distribution networks under uncertain environment, Appl. Energy 324, 119681. [CrossRef] [Google Scholar]
  • Setyonegoro M.I.B., Irnawan R., Putranto L.M., Firmansyah E., Atmaja W.Y., Adi N., Arifin Z., Gusti R., Prastianto D., Sarjiya (2024) Study of rooftop PV hosting capacity in 20 kV systems in facing distributed generation penetration, Results Eng. 23, 102517. [CrossRef] [Google Scholar]
  • Chihota M.J., Bekker B., Gaunt T. (2022) A stochastic analytic-probabilistic approach to distributed generation hosting capacity evaluation of active feeders, Int. J. Electr. Power Energy Syst. 136, 107598. [CrossRef] [Google Scholar]
  • Navarro A., Ochoa L.F., Randles D. (2013) Monte Carlo-based assessment of PV impacts on real UK low voltage networks, in: 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, 21–25 July, IEEE, pp. 1–5. [Google Scholar]
  • Mulenga E., Bollen M.H.J., Etherden N. (2021) Solar PV stochastic hosting capacity in distribution networks considering aleatory and epistemic uncertainties, Int. J. Electr. Power Energy Syst. 130, 106928. [CrossRef] [Google Scholar]
  • Qammar N., Arshad A., Miller R.J., Mahmoud K., Lehtonen M. (2024) Probabilistic hosting capacity assessment towards efficient PV-rich low-voltage distribution networks, Electric Power Syst. Res. 226, 109940. [CrossRef] [Google Scholar]
  • Fatima S., Püvi V., Pourakbari-Kasmaei M., Lehtonen M. (2023) Photovoltaic hosting capacity improvement based on the economic comparison between curtailment and network upgrade, IET Generation Trans. Dist. 17, 17, 3848–3860. [CrossRef] [Google Scholar]
  • Sossan F., Darulova J., Paolone M., Kahl A., Bartlett S.J., Lehning M. (2016) Large scale deployment of PV units in existing distribution networks: Optimization of the installation layout, in: 2016 Power Systems Computation Conference (PSCC), Genoa, Italy, 20–24 June, IEEE, pp. 1–6. [Google Scholar]
  • Dubey A. (2017) Impacts of voltage control methods on distribution circuit’s photovoltaic (PV) integration limits, Inventions 2, 4, 28. [CrossRef] [MathSciNet] [Google Scholar]
  • Atmaja W.Y., Sarjiya, Lesnanto M.P., Pramono E.Y. (2019) Hosting capacity improvement using reactive power control strategy of rooftop PV inverters, in: 2019 IEEE 7th International Conference on Smart Energy Grid Engineering (SEGE), Oshawa, ON, Canada, 12–14 August, IEEE, pp. 213–217. [Google Scholar]
  • Diaaeldin I.M., Abdel Aleem S.H.E., El-Rafei A., Abdelaziz A.Y., Zobaa A.F. (2020) Enhancement of hosting capacity with soft open points and distribution system reconfiguration: multi-objective bilevel stochastic optimization, Energies 13, 20, 5446. [Google Scholar]
  • Abad M.S.S., Ma J. (2021) Photovoltaic hosting capacity sensitivity to active distribution network management, IEEE Trans. Power Syst. 36, 1, 107–117. [CrossRef] [Google Scholar]
  • Ismael S.M., Abdel Aleem S.H.E., Abdelaziz A.Y., Zobaa A.F. (2018) Practical considerations for optimal conductor reinforcement and hosting capacity enhancement in radial distribution systems, IEEE Access 6, 27268–27277. [CrossRef] [Google Scholar]
  • Kahrobaee S., Mehr V. (2020)Probabilistic analysis of pv curtailment impact on distribution circuit hosting capacity, in: 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), Calgary, AB, Canada, 15 June 2020–21 August, IEEE, pp. 2210–2213. [Google Scholar]
  • Sakar S., Balci M.E., Abdel Aleem S.H.E., Zobaa A.F. (2017) Increasing PV hosting capacity in distorted distribution systems using passive harmonic filtering, Electr. Power Syst. Res. 148, 74–86. [CrossRef] [Google Scholar]
  • Bhusal N., Kamruzzaman Md., Benidris M. (2019) Photovoltaic hosting capacity estimation considering the impact of electric vehicles, in: 2019 IEEE Industry Applications Society Annual Meeting, Baltimore, MD, USA, 29 September–3 October, IEEE, pp. 1–6. [Google Scholar]
  • Quijano D.A., Melgar-Dominguez O.D., Sabillon C., Venkatesh B., Padilha-Feltrin A. (2021) Increasing distributed generation hosting capacity in distribution systems via optimal coordination of electric vehicle aggregators, IET Generation Trans. Dist. 15, 2, 359–370. [CrossRef] [Google Scholar]
  • Ali A., Mahmoud K., Lehtonen M. (2020) Enhancing hosting capacity of intermittent wind turbine systems using bi-level optimisation considering OLTC and electric vehicle charging stations, IET Renew. Power Gener. 14, 17, 3558–3567. [CrossRef] [Google Scholar]
  • Seydali Seyf Abad M., Ma J., Ahmadyar A., Marzooghi H. (2018) Distributionally robust distributed generation hosting capacity assessment in distribution systems, Energies 11, 11, 2981. [Google Scholar]
  • Fachrizal R., Ramadhani U.H., Munkhammar J., Widén J. (2021) Combined PV–EV hosting capacity assessment for a residential LV distribution grid with smart EV charging and PV curtailment”, Sustain, Energy, Grids Netw. 26, 100445. [Google Scholar]
  • Filip R., Püvi V., Paar M., Lehtonen M. (2022) Analyzing the impact of EV and BESS deployment on PV hosting capacity of distribution networks, Energies 15, 21, 7921. [CrossRef] [Google Scholar]
  • Ali A., Mahmoud K., Lehtonen M. (2021) Maximizing hosting capacity of uncertain photovoltaics by coordinated management of OLTC, VAr sources and stochastic EVs, Int. J. Electr. Power Energy Syst. 127, 106627. [CrossRef] [Google Scholar]
  • Zenhom Z.M., Aleem S.H.E.A., Zobaa A.F., Boghdady T.A. (2024) A comprehensive review of renewables and electric vehicles hosting capacity in active distribution networks, IEEE Access 12, 3672–3699. [CrossRef] [Google Scholar]
  • EN 50160:2010 (2010) Voltage characteristics of electricity supplied by public electricity networks.Available at https://standards.iteh.ai/catalog/standards/clc/18a86a7c-e08e-405e-88cb-8a24e5fedde5/en-50160-2010?srsltid=AfmBOop7UvFYvE4xyc5wFl__uI3rTbD3DXu25_pVsnZCJy9n2tnm43sP. [Google Scholar]
  • Šarić M., Hivziefendić J., Konjić T. (2019) Multi-objective DG allocation in a radial power distribution network for power loss reduction, voltage profile improvement and investment deferral, Elektroteh. Vestn. 86, 5, 253–258. [Google Scholar]
  • Abad M.S.S., Ma J., Zhang D., Ahmadyar A.S., Marzooghi H. (2018) Probabilistic assessment of hosting capacity in radial distribution systems, IEEE Trans. Sustain. Energy 9, 4, 1935–1947. [CrossRef] [Google Scholar]
  • Hanjalić M., Melić E., Šarić M., Hivziefendić J. (2023) Hosting capacity assessment in electrical power distribution systems using genetic algorithm, Electr. Power Compon. Syst. 51, 19, 2354–2366. [CrossRef] [Google Scholar]
  • OpenDSS [Online], SourceForge. Available at https://sourceforge.net/projects/electricdss/ (accessed April 10, 2023). [Google Scholar]
  • Dugan R.C., Montenegro D., Ballanti A., The open distribution system simulator (OpenDSS), Electric Power Research Institute (EPRI), 2021, 243 p. [Google Scholar]
  • OpenDSS PVSystem element model version 1, EPRI, 2011. [Google Scholar]
  • Prasetyo S.D., Budiana E.P., Prabowo A.R., Arifin Z. (2023) Modeling finned thermal collector construction nanofluid-based Al2O3 to enhance photovoltaic performance, Civ. Eng. J. 9, 12, 2989–3007. [CrossRef] [Google Scholar]
  • Arifin Z., Khairunisa N., Kristiawan B., Prasetyo S.D., Bangun W.B. (2023) Performance analysis of nanofluid-based photovoltaic thermal collector with different convection cooling flow, Civ. Eng. J. 9, 8, 1922–1935. [CrossRef] [Google Scholar]
  • Abad M.S.S., Ma J., Zhang D., Ahmadyar A.S., Marzooghi H. (2018) Sensitivity of hosting capacity to data resolution and uncertainty modeling, in: 2018 Australasian Universities Power Engineering Conference (AUPEC), Auckland, New Zealand, 27–30 November, IEEE, pp. 1–6. [Google Scholar]
  • Kersting W.H. (2001) Radial distribution test feeders, in: 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194), Columbus, OH, USA, 28 January–1 February, IEEE, pp. 908–912. [Google Scholar]
  • Ismael S.M., Abdel Aleem S.H.E., Abdelaziz A.Y., Zobaa A.F. (2019) State-of-the-art of hosting capacity in modern power systems with distributed generation, Renew. Energy 130, 1002–1020. [CrossRef] [Google Scholar]
  • Torquato R., Salles D., Oriente Pereira C., Meira P.C.M., Freitas W. (2018) A comprehensive assessment of PV hosting capacity on low-voltage distribution systems, IEEE Trans. Power Delivery 33, 2, 1002–1012. [CrossRef] [Google Scholar]
  • Katiraei F., Aguero J. (2011) Solar PV integration challenges, IEEE Power Energy Mag. 9, 3, 62–71. [CrossRef] [Google Scholar]
  • Ding F., Mather B. (2017) On distributed PV hosting capacity estimation, sensitivity study, and improvement, IEEE Trans. Sustain. Energy 8, 3, 1010–1020. [CrossRef] [Google Scholar]
  • Sadeghian H., Wang Z. (2020) A novel impact-assessment framework for distributed PV installations in low-voltage secondary networks, Renew. Energy 147, 2179–2194. [CrossRef] [Google Scholar]
  • Duwadi K., Ingalalli A., Hansen T.M. (2019) Monte Carlo analysis of high penetration residential solar voltage impacts using high performance computing, in: 2019 IEEE International Conference on Electro Information Technology (EIT), Brookings, SD, USA, 20–22 May, IEEE, pp. 1–6. [Google Scholar]
  • Al-Saffar M., Zhang S., Nassif A., Musilek P. (2019) Assessment of photovoltaic hosting capacity of existing distribution circuits, in: 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), Edmonton, AB, Canada, 5–8 May, IEEE, pp. 1–4. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.