Issue
Sci. Tech. Energ. Transition
Volume 79, 2024
Decarbonizing Energy Systems: Smart Grid and Renewable Technologies
Article Number 86
Number of page(s) 16
DOI https://doi.org/10.2516/stet/2024064
Published online 23 October 2024
  • Semsar S., Luo Z., Nie S., Lehn P.W. (Jan. 2024) Integrated wireless charging receiver for electric vehicles with dual inverter drives, IEEE Trans. Power Electron. 39, 1, 1802–1814. https://doi.org/10.1109/TPEL.2023.3320664. [CrossRef] [Google Scholar]
  • Zhang Y., Liu C., Zhou M., Mao X. (2024) A novel asymmetrical quadrupolar coil for interoperability of unipolar, bipolar, and quadrupolar coils in electric vehicle wireless charging systems, IEEE Trans. Ind. Electron. 71, 4, 4300–4303. https://doi.org/10.1109/TIE.2023.3277123. [CrossRef] [Google Scholar]
  • Hua Z., Chau K.T., Pang H., Yang T. (Nov. 2023) Dynamic wireless charging for electric vehicles with autonomous frequency control, IEEE Trans. Magn. 59, 11, 8700405. https://doi.org/10.1109/TMAG.2023.3293793. [Google Scholar]
  • Banothu C.S., Rao G.S., Vijay Babu A.R. (2023) Magnetic coupling spiral-square coil mutual inductance evaluation for interoperable conditions with different misalignments, in: 2023 3rd International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET), Patna, India, 21–22 December, pp. 1–6. https://doi.org/10.1109/ICEFEET59656.2023.10452230. [Google Scholar]
  • Narasipuram R.P., Mopidevi S., Dianov A., Tandon A.S. (2024) Analysis of scalable resonant DC–DC converter using GaN switches for xEV charging stations, World Electr. Veh. J. 15, 218. [CrossRef] [Google Scholar]
  • Mahesh A., Chokkalingam B., Mihet-Popa L. (2021) Inductive wireless power transfer charging for electric vehicles – a review, IEEE Access 9, 137667–137713. https://doi.org/10.1109/ACCESS.2021.3116678. [CrossRef] [Google Scholar]
  • Zhang Y., Wu Y., Shen Z., Pan W., Wang H., Dong J., Mao X., Liu X. (July 2023) Integration of onboard charger and wireless charging system for electric vehicles with shared coupler, compensation, and rectifier, IEEE Trans. Ind. Electron. 70, 7, 7511–7514. https://doi.org/10.1109/TIE.2022.3204857. [CrossRef] [Google Scholar]
  • Zhang S., Yu J.J.Q. (2022) Electric vehicle dynamic wireless charging system: optimal placement and vehicle-to-grid scheduling, IEEE Internet Things J. 9, 8, 6047–6057. https://doi.org/10.1109/JIOT.2021.3109956. [CrossRef] [Google Scholar]
  • Elghanam E., Ndiaye M., Hassan M.S., Osman A.H. (2023) Location selection for wireless electric vehicle charging lanes using an integrated TOPSIS and binary goal programming method: a UAE case study, IEEE Access 11, 94521–94535. https://doi.org/10.1109/ACCESS.2023.3308524. [CrossRef] [Google Scholar]
  • Mangu B., Kumar K.K., Fernandes B.G. (2011) A novel grid interactive hybrid power supply system for telecom application, in: 2011 Annual IEEE India Conference, Hyderabad, India, 16–18 December, IEEE, pp. 1–5. https://doi.org/10.1109/INDCON.2011.6139543. [Google Scholar]
  • Narasipuram R.P., Mopidevi S. (2023) A dual primary side FB DC-DC converter with variable frequency phase shift control strategy for on/off board EV charging applications, in: Proceedings of the 2023 9th IEEE India International Conference on Power Electronics (IICPE), Sonipat, India, 28–30 November, IEEE, PP. 1–5. [Google Scholar]
  • Banothu C.S., Gorantla S.R., Attuluri R.V.B., Evuri G.R. (2024) Impacts of wireless charging system for electric vehicles on power grid, e-Prime – Adv. Electr. Eng. Electron. Energy 8, 100561. [CrossRef] [Google Scholar]
  • Razu M.R.R., Mahmud S., Uddin M.J., Islam S.S., Bais B., Misran N., Islam M.T. (2021) Wireless charging of electric vehicle while driving, IEEE Access 9, 157973–157983. https://doi.org/10.1109/ACCESS.2021.3130099. [CrossRef] [Google Scholar]
  • Ju Y., Liu W., Zhang Z., Zhang R. (2022) Distributed three-phase power flow for AC/DC hybrid networked microgrids considering converter limiting constraints, IEEE Trans. Smart Grid 13, 3, 1691–1708. [CrossRef] [Google Scholar]
  • Song J., Mingotti A., Zhang J., Peretto L., Wen H. (2022) Fast iterative-interpolated DFT phasor estimator considering out-of-band interference, IEEE Trans, Instrum. Meas. 71, 1–14. [Google Scholar]
  • Ravikiran V., Keshri R.K., Bertoluzzo M. (2018) Efficient wireless charging of batteries with controlled temperature and asymmetrical coil coupling, in: IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Chennai, India, 18–21 December, IEEE, 1–5. [Google Scholar]
  • Sun Q., Lyu G., Liu X., Niu F., Gan C. (2024) Virtual current compensation-based quasi-sinusoidal-wave excitation scheme for switched reluctance motor drives, IEEE Trans. Ind. Electron. 71, 9, 10162–10172. [CrossRef] [Google Scholar]
  • Bukya R., Mangu B., Jayaprakash A., Ramesh J. (2020) A study on current-fed topology for wireless resonant inductive power transfer battery charging system of electric vehicle, in: 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC), Mathura, India, 28–29 February, pp. 415–421. [Google Scholar]
  • Narasipuram R.P., Mopidevi S. (2023) A novel hybrid control strategy and dynamic performance enhancement of a 3.3 kW GaN–HEMT-based iL2C resonant full-bridge DC–DC power converter methodology for electric vehicle charging systems, Energies 16, 5811. [CrossRef] [Google Scholar]
  • Wang H., Pratik U., Jovicic A., Hasan N., Pantic Z. (Dec. 2021) Dynamic wireless charging of medium power and speed electric vehicles, IEEE Trans. Veh. Technol. 70, 12, 12552–12566. https://doi.org/10.1109/TVT.2021.3122366. [CrossRef] [Google Scholar]
  • Li Y., Sun W., Liu J., Liu Y., Yang X., Li Y., Hu J., He Z. (Nov. 2022) A new magnetic coupler with high rotational misalignment tolerance for unmanned aerial vehicles wireless charging, IEEE Trans. Power Electron. 37, 11, 12986–12991. https://doi.org/10.1109/TPEL.2022.3184335. [CrossRef] [Google Scholar]
  • Narasipuram R.P., Mopidevi S. (2024) An industrial design of 400 V–48 V, 98.2% peak efficient charger using E-mode GaN technology with wide operating ranges for xEV applications, Int. J. Numer. Model. Electron. Netw. Devices Fields 37, e3194. [CrossRef] [Google Scholar]
  • Bukya R., Mangu B., Bhaskar B., Bhavsingh B. (2021) Analysis of interoperability different compensation network in wireless EV charging systems, in: 2021 2nd Global Conference for Advancement in Technology (GCAT), Bangalore, India, 1–3 October, IEEE, pp. 1–6. https://doi.org/10.1109/GCAT52182.2021.9587618. [Google Scholar]
  • Narasipuram R.P., Mopidevi S. (2024) Assessment of E-mode GaN technology, practical power loss, and efficiency modelling of iL2C resonant DC-DC converter for xEV charging applications, J. Energy Storage 91, 112008. [CrossRef] [Google Scholar]
  • Yao Y., Gao S., Mai J., Liu X., Zhang X., Xu D. (2022) A novel misalignment tolerant magnetic coupler for electric vehicle wireless charging, IEEE J. Emerging Sel. Top. Ind. Electron. 3, 2, 219–229. https://doi.org/10.1109/JESTIE.2021.3051550. [CrossRef] [Google Scholar]
  • Narasipuram R.P., Karkhanis V.A., Ellinger M., Saranath K.M., Alagarsamy G., Jadhav R. (2024) Systems engineering – a key approach to transportation electrification, in: Symposium on International Automotive Technology; SAE Technical Paper, 2024–26-0128, SAE International. [Google Scholar]
  • Bukya R., Mangu B., Bhaskar B., Ramesh J. (2022) Design and performance analysis of compensation capacitors in P-S topology for wireless system on receiver side, in: 2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT), Hyderabad, India, 4–6 August, IEEE, pp. 1–6. https://doi.org/10.1109/SeFeT55524.2022.9909354. [Google Scholar]
  • Lu Y., Tan C., Ge W., Zhao Y., Wang G. (2023) Adaptive disturbance observer-based improved super-twisting sliding mode control for electromagnetic direct-drive pump, Smart Mater. Struct. 32, 1, 17001. [Google Scholar]
  • Mangu B., Fernandes B.G. (Sept. 2014) Multi-input transformer coupled DC-DC converter for PV-wind based stand-alone single phase power generating system, in: IEEE Energy Conversion Congress and Exposition, ECCE’2014, Pittsburgh, PA, USA, 14–18 September, IEEE, pp. 5288–5295. [Google Scholar]
  • Vijay Babu A.R., Kumar P.M., Rao G.S. (2017) Design and modelling of fuel cell powered quadratic Boost converter based multi-level inverter, in: 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, India, 21–22 April, IEEE, pp. 1–6. [Google Scholar]
  • Lei Y., Yanrong C., Hai T., Ren G., Wenhuan W. (2023) DGNet: an adaptive lightweight defect detection model for new energy vehicle battery current collector, IEEE Sens. J. 23, 23, 29815–29830. [CrossRef] [Google Scholar]
  • Balu V., Krishnaveni K., Srinivas P. (2022) TSK-fuzzy controllers for novel energy management system of renewable energy sources based AC microgrid with five level inverter, in: 2022 IEEE 10th Power India International Conference (PIICON), New Delhi, India, 25–27 November, IEEE, pp. 1–6. https://doi.org/10.1109/PIICON56320.2022.10045092. [Google Scholar]
  • Feng J., Yao Y., Liu Z., Liu Z. (2024) Electric vehicle charging stations’ installing strategies: considering government subsidies, Appl. Energy 370, 123552. [CrossRef] [Google Scholar]
  • Banothu C.S., Gorantla S.R., Attuluri R.V.B., Evuri G.R. (2024) Interoperable square-circular coupled coils for wireless electric vehicle battery charging system with different misalignments, IET Power Electron. 1–18. [Google Scholar]
  • Vijay Babu A.R., Rajyalakshmi V., Suresh K. (2017) Renewable energy integrated high gain DC-DC converter with multilevel inverter for water pumping applications, J. Adv. Res. Dyn. Control Syst. 9, 1, 172–190. [Google Scholar]
  • Anand S., Farswan R.S., Mangu B., Fernandes B.G. (2012) Optimal charging of battery using solar pv in standalone dc system, in: 6th IET International Conference on Power Electronics, Machines and Drives (PEMD 2012), Bristol, 27-29 March, IET, pp. 1–6. https://doi.org/10.1049/cp.2012.0339. [Google Scholar]
  • Patra P., Samanta S., Patra A., Chattopadhyay S. (2006) A novel control technique for single-inductor multiple-output DC-DC buck converters, in: IEEE International Conference on Industrial Technology, Mumbai, India, 15-17 December, IEEE, pp. 807–811. [Google Scholar]
  • He T., Zheng Y., Liang X., Li J., Lin L., Zhao W., Li Y., Zhao J. (2023) A highly energy-efficient body-coupled transceiver employing a power-on-demand amplifier, Cyborg Bionic Syst. 4, 30. [CrossRef] [Google Scholar]
  • Kurs A., Karalis A., Moffatt R., Joannopoulos J.D., Fisher P., Soljacic M. (2007) Wireless power transfer via strongly coupled magnetic resonances, Science 317, 83–86. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.