Open Access
Sci. Tech. Energ. Transition
Volume 77, 2022
Article Number 1
Number of page(s) 5
Published online 28 January 2022
  • IEA (2020) Global CO2 emissions in 2019, IEA, Paris. [Google Scholar]
  • Bui M., Adjiman C.S., Bardow A., Anthony E.J., Boston A., Brown S., Fennell P.S., Fuss S., Galindo A., Hackett L.A., Hallett J.P., Herzog H.J., Jackson G., Kemper J., Krevor S., Maitland G.C., Matuszewski M., Metcalfe I.S., Petit C., Puxty G., Reimer J., Reiner D.M., Rubin E.S., Scott S.A., Shah N., Smit B., Trusler J.P.M., Webley P., Wilcox J., Mac Dowell N. (2018) Carbon Capture and Storage (CCS): the way forward, Energy Environ. Sci. 11, 5, 1062–1176. [CrossRef] [Google Scholar]
  • Cuéllar-Franca R.M., Azapagic A. (2015) Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts, J. CO2 Util. 9, 82–102. [Google Scholar]
  • Feron P.H.M., Hendriks C.A. (2005) CO2 capture process principles and costs, Oil Gas Sci. Technol. 60, 451–459. [CrossRef] [Google Scholar]
  • Sanna A., Uibu M., Caramanna G., Kuusik R., Maroto-Valer M.M. (2014) A review of mineral carbonation technologies to sequester CO2, Chem. Soc. Rev. 43, 8049. [CrossRef] [PubMed] [Google Scholar]
  • Olajire A. (2013) Valorization of greenhouse carbon dioxide emissions into value-added products by catalytic processes, J. CO2 Util. 3–4, 74–92. [Google Scholar]
  • Nova Institute (2015) Bio-based & CO2-based economy, [Google Scholar]
  • Babu R.P., O’Connor K., Seeram R. (2013) Current progress on bio-based polymers and their future trends, Prog. Biomater. 2, 8. [CrossRef] [Google Scholar]
  • Schmid G., Arvanitis E., Baldauf M., Taroata D., Walachowicz F. (2013) A method and a system for converting carbon dioxide into chemical starting materials. US2013178677A1. [Google Scholar]
  • Connolly H.P. (2011) Preparation of halogenated hydrocarbons. CA2751148A1. [Google Scholar]
  • Bhethanabotla V., Daza Y., Dutta D., Kuhn J.N. (2017) Systems and methods for converting carbon dioxide into chemical feedstock. US9815702B1. [Google Scholar]
  • Piispanen A (2017) Procédé et appareil pour séparer le dioxyde de carbone et pour utiliser le dioxyde de carbone. WO2017140954A1. [Google Scholar]
  • Bogild Hansen J., Friis Pedersen C., Schjodt N.C. (2014) Process for the production of chemical compounds from carbon dioxide. AU2013256880A1. [Google Scholar]
  • Lambert S., Wagner M. (2017) Environmental performance of bio-based and biodegradable plastics: the road ahead, Chem. Soc. Rev. 46, 6855–6871. [CrossRef] [PubMed] [Google Scholar]
  • Sun Z., Fridrich B., de Santi A., Elangovan S., Barta K. (2018) Bright side of lignin depolymerization: toward new platform chemicals, Chem. Rev. 118, 614–678. [CrossRef] [PubMed] [Google Scholar]
  • Iwata T. (2015) Biodegradable and bio-based polymers: future prospects of eco-friendly plastics, Angew. Chem. Int. Ed. 54, 3210–3215. [CrossRef] [Google Scholar]
  • Castro-Aguirre E., Iniguez-Franco F., Samsudin H., Fang X., Auras R. (2016) Poly(lactic acid) – mass production, processing, industrial applications, and end of life, Adv. Drug Delivery Rev. 107, 333–366. [CrossRef] [Google Scholar]
  • Sternberg A., Jens C.M., Bardow A. (2017) Life cycle assessment of CO2-based C1-chemicals, Green Chem. 19, 2244. [CrossRef] [Google Scholar]
  • Grignard B., Gennen S., Jérôme C., Kleij A.W., Detrembleur C. (2019) Advances in the use of CO2 as a renewable feedstock for the synthesis of polymers, Chemical Society Reviews. [Google Scholar]
  • Li Y., Zhang Y.-Y., Hu L.-F., Zhang X.-H., Du B.-Y., Xu J.-T. (2018) Carbon dioxide-based copolymers with various architectures, Prog. Polym. Sci. 82, 120–157. [CrossRef] [Google Scholar]
  • Muthuraj R., Mekonnen T. (2018) Recent progress in carbon dioxide (CO2) as feedstock for sustainable materials development: Co-polymers and polymer blends, Polymer 145, 348–373. [CrossRef] [Google Scholar]
  • Kamphuis A.J., Picchioni F., Pescarmona P.P. (2019) CO2-fixation into cyclic and polymeric carbonates: principles and applications, Green Chem. 21, 406–448. [CrossRef] [Google Scholar]
  • Yadav N., Seidi F., Crespy D., D’Elia V. (2019) Polymers based on cyclic carbonates as Trait d’Union between polymer chemistry and sustainable CO2 utilization, ChemSusChem 12, 724–754. [CrossRef] [PubMed] [Google Scholar]
  • Xu Y., Lin L., Xiao M., Wang S., Smith A.T., Sun L., Meng Y. (2018) Synthesis and properties of CO2-based plastics: environmentally-friendly, energy-saving and biomedical polymeric materials, Prog. Polym. Sci. 80, 163–182. [CrossRef] [Google Scholar]
  • Liu S., Wang X. (2017) Polymers from carbon dioxide: polycarbonates, polyurethanes, Curr. Opin. Green Sustainable Chem. 3, 61–66. [CrossRef] [Google Scholar]
  • Zhu Y., Romain C., Williams C.K. (2016) Sustainable polymers from renewable resources, Nature 540, 354. [CrossRef] [PubMed] [Google Scholar]
  • Poland S.J., Darensbourg D.J. (2017) A quest for polycarbonates provided via sustainable epoxide/CO2 copolymerization processes, Green Chem. 19, 4990–5011. [CrossRef] [Google Scholar]
  • Inoue S., Koinuma H., Tsuruta T. (1969) Copolymerization of carbon dioxide and epoxide with organometallic compounds, Die Makromol. Chem. 130, 210–220. [CrossRef] [Google Scholar]
  • Aresta M. (ed) (2010) Carbon dioxide as chemical feedstock, Wiley-VCH Verlag GmbH & Co. KGaA. [CrossRef] [Google Scholar]
  • Aresta M., Dibenedetto A., Angelini A. (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2, Chem. Rev. 114, 1709–1742. [CrossRef] [PubMed] [Google Scholar]
  • Sakakura T., Choi J.-C., Yasuda H. (2007) Transformation of carbon dioxide, Chem. Rev. 107, 2365–2387. [CrossRef] [PubMed] [Google Scholar]
  • Omae I. (2012) Recent developments in carbon dioxide utilization for the production of organic chemicals, Coord. Chem. Rev. 256, 1384–1405. [CrossRef] [Google Scholar]
  • Dabral S., Schaub T. (2019) The use of Carbon Dioxide (CO2) as a building block in organic synthesis from an industrial perspective, Adv. Synth. Catal. 361, 223–246. [CrossRef] [Google Scholar]
  • Peters M., Kohler B., Kuckshinrichs W., Leitner W., Markewitz P., Muller T.E. (2011) Chemical technologies for exploiting and recycling carbon dioxide into the value chain, ChemSusChem 4, 1216–1240. [CrossRef] [PubMed] [Google Scholar]
  • Maeda C., Miyazaki Y., Ema T. (2014) Recent progress in catalytic conversions of carbon dioxide, Catal. Sci. Technol. 4, 1482–1497. [CrossRef] [Google Scholar]
  • Schlager S., Fuchsbauer A., Haberbauer M., Neugebauer H., Sariciftci N.S. (2017) Carbon dioxide conversion to synthetic fuels using biocatalytic electrodes, J. Mater. Chem. A 5, 2429–2443. [CrossRef] [Google Scholar]
  • Liu Q., Wu L., Jackstell R., Beller M. (2015) Using carbon dioxide as a building block in organic synthesis, Nat. Commun. 6, 5933. [CrossRef] [Google Scholar]
  • Riduan S.N., Zhang Y. (2010) Recent developments in carbon dioxide utilization under mild conditions, Dalton Trans. 39, 3347–3357. [CrossRef] [PubMed] [Google Scholar]
  • Sujith S., Min J.K., Seong J.E., Na S.J., Lee B.Y. (2008) A highly active and recyclable catalytic system for CO2/propylene oxide copolymerization, Angew Chem Int Ed Engl. 47, 38, 7306–7309. [CrossRef] [Google Scholar]
  • Rokicki G., Kowalczyk T. (2000) Synthesis of oligocarbonate diols and their characterization by MALDI-TOF spectrometry, Polymer 41, 9013–9031. [CrossRef] [Google Scholar]
  • Pawlowski P., Rokicki G. (2004) Synthesis of oligocarbonate diols from ethylene carbonate and aliphatic diols catalyzed by alkali metal salts, Polymer 45, 3125–3137. [CrossRef] [Google Scholar]
  • Huang J., Worch J.C., Dove A.P., Coulembier O. (2020) Update and challenges in carbon dioxide‐based polycarbonate synthesis, ChemSusChem 13, 469–487. [CrossRef] [PubMed] [Google Scholar]
  • Koohestanian E., Sadeghi J., Mohebbi-Kalhori D., Shahraki F., Samimi A. (2018) A novel process for CO2 capture from the flue gases to produce urea and ammonia, Energy 144, 279–285. [CrossRef] [Google Scholar]
  • Alper E., Yuksel Orhan O. (2017) CO2 utilization: Developments in conversion processes, Petroleum 3, 1, 109–126. [CrossRef] [Google Scholar]
  • Kindermann N., Cristofol A., Kleij A.W. (2017) Access to biorenewable polycarbonates with unusual glass-transition temperature (Tg) modulation, ACS Catal. 7, 3860–3863. [CrossRef] [Google Scholar]
  • Muthuraj R., Mekonnen T. (2018) Recent progress in carbon dioxide (CO2) as feedstock for sustainable materials development: Co-polymers and polymer blends, Polymer 145, 348–373. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.