Issue |
Sci. Tech. Energ. Transition
Volume 79, 2024
Decarbonizing Energy Systems: Smart Grid and Renewable Technologies
|
|
---|---|---|
Article Number | 45 | |
Number of page(s) | 22 | |
DOI | https://doi.org/10.2516/stet/2024034 | |
Published online | 05 August 2024 |
Regular Article
Enhanced Randomized Harris Hawk Optimization of PI controller for power flow control in the microgrid with the PV-wind-battery system
School of Electrical and Electronics, Department of Electrical and Electronics Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, India
* Corresponding author: pavanphd80@gmail.com
Received:
18
January
2024
Accepted:
15
May
2024
Microgrids, characterized by their ability to work individually or in combination with the main power system, play a pivotal role in addressing the growing demand for reliable and sustainable energy solutions. This work concentrates on the integration of sustainable energy sources, specifically photovoltaic (PV), and wind generation and a battery storage system within a microgrid framework. Additionally, a power flow control strategy is implemented to enhance the dynamic behaviour and stability of the microgrid. The proportional-integral (PI) controller is a fundamental component in regulating the microgrid’s power flow, ensuring optimal performance under varying operating conditions. However, tuning the PI controller parameters is a difficult task because of the dynamic and nonlinear nature of renewable energy sources. In this work, the application of the Enhanced Randomized Harris Hawk Optimization (ERHHO) to fine-tune the PI controller is proposed, using the algorithm’s ability to mimic the hunting behaviour of hawks in finding optimal solutions. The PV-Wind-Battery microgrid system is modelled, and the proposed algorithm is employed to optimize the PI controller parameters for efficient energy management. The ERHHO algorithm’s exploration-exploitation balance is harnessed to navigate the complex solution space and converge to optimal PI controller settings, thereby enhancing the microgrid’s stability and performance. The study evaluates the effectiveness of the proposed ERHHO-based PI controller tuning through comprehensive simulations. Performance metrics such as transient response, overshoot, settling time, and steady-state error are analysed to validate the robustness and efficiency of the proposed method. Compared to its nearest optimization algorithm, with the proposed algorithm rise time is reduced by 50%, overshoot is reduced by 75%, settling time is reduced by 66%, and finally, a percentage of reduction of steady-state error is 45%. The outcomes of this research contribute to the advancement of microgrid control strategies, offering a novel approach to PI controller tuning in the context of diverse renewable energy sources. The integration of the Harris Hawk Optimization algorithm provides a promising avenue for enhancing the operational efficiency and reliability of microgrids, paving the way for sustainable and resilient energy systems in the aspect of growing energy landscapes.
Key words: Microgrid / Renewable energy / Photovoltaic (PV) / Wind generation / Proportional-integral (PI) controller / Harris Hawk Optimization (HHO) algorithm / Microgrid stability / Simulation analysis
© The Author(s), published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.