Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Investigating the causal relationship between electricity pricing policy and CO2 emission: An application of machine learning-driven metalearners

Iman Emtiazi Naeini, Parisa RahimKhoei, Khadijeh Hassanzadeh and Zahra Saberi
Journal of Environmental Management 380 124514 (2025)
https://doi.org/10.1016/j.jenvman.2025.124514

Deep Learning vs. Gradient Boosting: Optimizing Transport Energy Forecasts in Thailand Through LSTM and XGBoost

Thanapong Champahom, Chinnakrit Banyong, Thananya Janhuaton, Chamroeun Se, Fareeda Watcharamaisakul, Vatanavongs Ratanavaraha and Sajjakaj Jomnonkwao
Energies 18 (7) 1685 (2025)
https://doi.org/10.3390/en18071685

Multi-Factor Carbon Emissions Prediction in Coal-Fired Power Plants: A Machine Learning Approach for Carbon Footprint Management

Xiaopan Liu, Haonan Yu, Hanzi Liu and Zhiqiang Sun
Energies 18 (7) 1715 (2025)
https://doi.org/10.3390/en18071715

Assessing CO2 Emission Trend and its Impact on Agricultural Crop Health using Machine Learning Technique

Puja Saha, Khwairakpam Amitab and Amitabha Nath
Procedia Computer Science 258 1506 (2025)
https://doi.org/10.1016/j.procs.2025.04.383

The energy effect of blockchain technology innovation in the Industry 5.0 Era: From the perspective of carbon emissions

Yunjing Wang, Jinfang Tian, Siyang Sun, Yufei Liu, Xiaoqi Ren, Muhammad Zakarya, Santosh Tirunagari, Jinguang Han and Peiying Zhang
Science and Technology for Energy Transition 80 4 (2025)
https://doi.org/10.2516/stet/2024094

GreenNav: Spatiotemporal Prediction of CO2 Emissions in Paris Road Traffic Using a Hybrid CNN-LSTM Model

Youssef Mekouar, Imad Saleh and Mohammed Karim
Network 5 (1) 2 (2025)
https://doi.org/10.3390/network5010002

Deep learning model based prediction of vehicle CO2 emissions with eXplainable AI integration for sustainable environment

Gazi Mohammad Imdadul Alam, Sharia Arfin Tanim, Sumit Kanti Sarker, Yutaka Watanobe, Rashedul Islam, M. F. Mridha and Kamruddin Nur
Scientific Reports 15 (1) (2025)
https://doi.org/10.1038/s41598-025-87233-y

Estimation of CO2 Emissions in Transportation Systems Using Artificial Neural Networks, Machine Learning, and Deep Learning: A Comprehensive Approach

Seval Ene Yalçın
Systems 13 (3) 194 (2025)
https://doi.org/10.3390/systems13030194

Forecasting urban passenger transportation emissions: a green and new energy approach

Fu-Rong Bai and Guo-Rong Sun
International Journal of Environmental Studies 81 (4) 1715 (2024)
https://doi.org/10.1080/00207233.2024.2375859

Numerical Investigation of the Combustion Characteristics of a Hydrogen-Fueled Engine with Water Injection

Qinghe Yao, Hongbo Lu, Junyi Chen and Trevor Hocksun Kwan
Fire 7 (8) 289 (2024)
https://doi.org/10.3390/fire7080289

Mitigating CO2 emissions in African transport networks under various policies and scenarios of Paris Agreement compliance

Mahaad Issa Shammas
International Journal of Sustainable Energy 43 (1) (2024)
https://doi.org/10.1080/14786451.2024.2393403

Determinants of carbon emissions in Africa: new evidence based on machine learning algorithms

Edwin Twum Ayimadu, Yaolin Liu, Isaac Osei Asante, Donatus Dunee and Grant Charles Mwakipunda
Environment, Development and Sustainability (2024)
https://doi.org/10.1007/s10668-024-05566-6

Analysis of the Impact of Selected Dynamic Parameters of a Motor Vehicle on CO2 Emissions Using Logistic Regression

Magdalena Rykała, Małgorzata Grzelak and Anna Borucka
Applied Sciences 14 (22) 10349 (2024)
https://doi.org/10.3390/app142210349