Issue
Sci. Tech. Energ. Transition
Volume 79, 2024
Emerging Advances in Hybrid Renewable Energy Systems and Integration
Article Number 79
Number of page(s) 10
DOI https://doi.org/10.2516/stet/2024049
Published online 08 October 2024
  • Yu S., Yiqing X., Longxiang C. (2011) Research on optimal planning of high voltage distribution network[J], Power Grid Technol. 35, 10, 70–75. [Google Scholar]
  • Hongbin Y., Huiqun C., Qunyong O. (2021) Obstacle detection based on laser ranging radar and machine vision [J], Mod. Radar 43, 5, 57–62. [Google Scholar]
  • Jiangong Z. (2021) Research on airborne lidar traffic anomaly data acquisition and data processing [J], Mod. Radar 43, 9, 63–68. [Google Scholar]
  • Xudong L., Yifei Y., Jingzhong X., Mingwei W. (2021) Waveform decomposition of airborne lidar based on improved differential evolution algorithm [J], J. Infrar. Millimeter Waves 40, 3, 381–390. [Google Scholar]
  • Xiaoying Z., Lei J., Jiang Z., Xiachao Y., Xiaobao Z., Lin K., Peiheng W. (2018) Comparison of laser ranging system based on SNSPD and SPAD detector [J], J. Infrar. Millimeter Waves 37, 3, 378–384. [Google Scholar]
  • Feng M., Gao X., Wang J., et al. (2021) Research on vehicle target shape position fusion algorithm based on stereo vision and LiDAR [J], J. Instrum. Meters 42, 10, 11–13. [Google Scholar]
  • Ming L., Zishu H.E. (2021) Selection algorithm of training samples for airborne radar based on output signal-to-noise ratio [J], J. Univ. Electron. Sci. Technol. China 50, 5, 6–12. [Google Scholar]
  • Jiajia G., Changyuan Z., Liping C., et al. (2021) Based on laser radar tree canopy leaf area target detection model research [J], J. Agric. Mach. 52, 11, 9–14. [Google Scholar]
  • Shuai Y., Xiang Y., Jingxian X., et al. (2021) Based on the deep study of cognitive imaging laser radar (guest) [J], J. Photon 50, 10, 10–13. [Google Scholar]
  • Zhou Z.G., Cao J.W., Di S.F. (2021) Overview of 3D lidar SLAM algorithms [J], J. Instrum. Meters 42, 9, 15–18. [Google Scholar]
  • Xiangda L., Hongtao W., Zongze Z. (2021) Integrated transfer learning and full convolutional networks for point cloud classification of small sample airborne lidar [J], Chin. J. Lasers 48, 16, 138–149. [Google Scholar]
  • Jia W., He W., Wu L., et al. (2022) Polarized laser radar polarization aberration correction of telescopic system [J], J. Opt. 42, 2, 7–12. [Google Scholar]
  • Qichao W., Songhua W., Hongwei Z., Bingyi L., Kailin Z. (2021) Observation and data processing of offshore wind field by unmanned aerial vehicle Doppler lidar [J], J. Infrar. Millimeter Waves 40, 4, 516–529. [Google Scholar]
  • Li J., Shao J., Wang R., et al. (2021) A closed-loop detection algorithm for lidar point cloud based on SR-context [J], J. Opt. 41, 22, 11–15. [Google Scholar]
  • Xu H., Zhi L., Yaojun W., et al. (2022) Pseudo random code modulation precision spaceborne laser ranging radar [J], Infrar. Laser Eng. 51, 3, 9–13. [Google Scholar]
  • Chaojie W., Renpeng Y., Xudong L., Xiangxi M., Xinyang L. (2021) Research progress of sub-nanosecond lasers for 3D imaging lidar applications[J], Opt. Precis. Eng. 29, 6, 1270–1280. [CrossRef] [Google Scholar]
  • Jinyue L., Xu T., Xiaohui J., Wenfeng X., Tiejun L. (2020) Chin. J. Sci. Instrum., 41, 7, 99–106. [Google Scholar]
  • Liang Z., Jie H., Han L., Yongpeng A., Zongquan X., Wang Y. (2021) Deep learning laser point cloud 3D target detection algorithm based on semantic segmentation[J], China Laser 27, 6, 1–22. [Google Scholar]
  • Bingqing X., Yan H., Wenjing X., Jun Z., Dongsong S. (2021) Infrar. Laser Eng. 50, 9, 192–200. [Google Scholar]
  • Zhangfei W., Chunyang L., Xin S., Fang Y., Xiqiang M., Lihai C. (2020) 3d point cloud target segmentation and collision detection based on depth projection [J], Opt. Precis. Eng. 28, 7, 1600–1608. [CrossRef] [Google Scholar]
  • Guoyan X., Huan N., Chenyang G., Hongjie S. (2020) Research on target recognition and tracking based on 3d laser point cloud [J], Autom. Eng. 42, 1, 38–46. [Google Scholar]
  • Yanwei H., Jianjun W., Yuanyuan F., Yunpeng L., Chongyue B., Qiyun Z. (2020) Three-dimensional modeling and volume calculation of space objects based on lidar [J], Chin. J. Lasers 47, 5, 496–505. [Google Scholar]
  • Jinyue L., Xu T., Xiaohui J., Dong Y., Tiejun L. (2019) Chin. J. Sci. Instrum. 40, 11, 64–72. [Google Scholar]
  • Jiangong Z. (2021) Research on airborne lidar traffic anomaly data acquisition and data processing [J], Mod. Radar 43, 9, 63–68. [Google Scholar]
  • Mianrong Y., Liping N. (2020) Research on geospatial element recognition algorithm based on lidar [J], Mod. Radar 42, 12, 56–61. [Google Scholar]
  • Centeno J.A., Silva C.R. (2022) Evaluation of LiDAR point clouds density in the interpolation of digital terrain models for power line planning in Northeast Brazil, Anuário do Instituto de Geociências 45, 1–15. [Google Scholar]
  • Bhutada S., Shah J.P., Dhiman G., Chetwani S., Subramanian S.S., Subba Rao P.V. (2020) 3D electric field modelling of UHV class AC composite transmission line insulators, in: 2020 21st National Power Systems Conference (NPSC), pp. 1–6. [Google Scholar]
  • Santana J., Ortega S., Santana J.M., Trujillo A., Suárez J.P. (2018) Noise reduction automation of LiDAR point clouds for modeling and representation of high voltage lines in a 3D virtual globe, in: Spanish Computer Graphics Conference. [Google Scholar]
  • Tebaldini S., d’Alessandro M.M., Ulander L.M.H., Bennet P., Gustavsson A., Coccia A., Macedo K., Disney M.I., Wilkes P., Spors H.-J., Schumacher N., Hanuš J., Novotný J., Brede B., Bartholomeus H.M., Lau A., van der Zee J., Herold M., Schuettemeyer D., Scipal K. (2023) TomoSense: a unique 3D dataset over temperate forest combining multi-frequency mono- and bi-static tomographic SAR with terrestrial, UAV and airborne lidar, and in-situ forest census, Remote Sens. Environ. 290, 113532. [CrossRef] [Google Scholar]
  • Kočí J. Self-localization of an unmanned aerial vehicle in the transmission tower inspection task, 2022. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.