Issue
Sci. Tech. Energ. Transition
Volume 79, 2024
Decarbonizing Energy Systems: Smart Grid and Renewable Technologies
Article Number 62
Number of page(s) 18
DOI https://doi.org/10.2516/stet/2024056
Published online 02 September 2024
  • Abir S.A.A., Anwar A., Choi J., Kayes A. (2001) IoT-enabled smart energy grid: Applications and challenges, IEEE Access 9, 50961–50981. [Google Scholar]
  • Amin M. (2013) A smart self-healing grid: In pursuit of a more reliable and resilient system, IEEE Power Energy Mag. 12, 110–112. [Google Scholar]
  • Kumar K.P., Saravanan B., Swarup K.S. (2016) Optimization of renewable energy sources in a microgrid using artificial fish swarm algorithm, Energy Procedia 90, 107–113. [CrossRef] [Google Scholar]
  • Qi F., Yu P., Chen B., Li W., Zhang Q., Jin D., Zhang G., Wang Y. (2018) Optimal planning of smart grid communication network for interregional wide-area monitoring protection and control system, in: 2018 IEEE International Conference on Energy Internet (ICEI), Beijing, China, 21–25 May, IEEE, pp. 190–195. [Google Scholar]
  • Narasipuram R.P., Karkhanis V.A., Ellinger M., Saranath K.M., Alagarsamy G., Jadhav R. (2024) Systems engineering – a key approach to transportation electrification, SAE Technical Paper 2024-26-0128. https://doi.org/10.4271/2024-26-0128. [Google Scholar]
  • Yan Y., Qian Y., Sharif H., Tipper D. (2013) A survey on smart grid communication infrastructures: motivations, requirements and challenges, IEEE Commun. Surv. Tutor. 15, 5–20. [CrossRef] [Google Scholar]
  • Jha R.K., Shah B.K., Patel A. (2024) Advanced control strategies for resilient voltage and frequency regulation in smart grids, J. Electr. Eng. Autom. 6, 1, 1–18. [Google Scholar]
  • Alaba F.A., Sani U., Dada E.G., Mohammed B.H. (2024) AIoT-enabled smart grids: advancing energy efficiency and renewable energy integration, in: S. Misra, K. Siakas, G. Lampropoulos (eds), Artificial intelligence of things for achieving sustainable development goals, vol. 192, Springer, Cham, pp. 47–66. https://doi.org/10.1007/978-3-031-53433-1_4. [Google Scholar]
  • Wang G., Huang Y., Wang C., Shahidehpour M., Hao Q. (2024) Voltage-adaptive strategy for transient stability enhancement of power systems with 100% renewable energy, in: IEEE Trans. Autom. Sci. Eng., IEEE, pp. 1–13. https://doi.org/0.1109/TASE.2024.3364709. [Google Scholar]
  • do Nascimento F., Filho A.J.S., Gonçalves A.F.Q., dos Santos Alonso A.M., Bernardino L.G.R., Silva P.F., de Souza W.A. (2024) Active power filters applied to smart grids: harmonic content estimation based on deep neural network, in: A.J. Sguarezi Filho, R.V. Jacomini, C.E. Capovilla, I.R.S. Casella (eds), Smart grids – renewable energy, power electronics, signal processing and communication systems applications, Springer, Cham, pp. 325–358. https://doi.org/10.1007/978-3-031-37909-3_12. [CrossRef] [Google Scholar]
  • Wang G., Huang Y., Wang C., Shahidehpour M., Hao Q. (2024) Voltage-adaptive strategy for transient stability enhancement of power systems with 100% renewable energy, IEEE Trans. Autom. Sci. Eng. https://doi.org/10.1109/TASE.2024.3364709. [Google Scholar]
  • Shah S.N.H. (2023) IoT enabled smart grid integration with edge computing method, in: 2023 International Conference on Communication, Computing and Digital Systems (C-CODE), IEEE, Islamabad, Pakistan, pp. 1–6. https://doi.org/10.1109/C-CODE58145.2023.10139871. [Google Scholar]
  • Judge M.A., Khan A., Manzoor A., Khattak H.A. (2022) Overview of smart grid implementation: Frameworks, impact, performance and challenges, J. Energy Stor. 49, 104056. https://doi.org/10.1016/j.est.2022.104056. [CrossRef] [Google Scholar]
  • Abdalla A.N., Nazir M.S., Tao H., Cao S., Ji R., Jiang M., Yao L. (2021) Integration of energy storage system and renewable energy sources based on artificial intelligence: an overview, J. Energy Stor. 40, 102811. https://doi.org/10.1016/j.est.2021.102811. [CrossRef] [Google Scholar]
  • Narasipuram R.P., Mopidevi S., Dianov A., Tandon A.S. (2024) Analysis of scalable resonant DC–DC converter using GaN switches for xEV charging stations, World Electr. Vehicle J. 15, 218. [CrossRef] [Google Scholar]
  • Tabassum S., Vijay Babu A.R., Dheer D.K., Pasha M.M. (2022) Inspection and surveillance of energy consumption in IoT-smart grid using wireless sensor network, in: 2022 IEEE 6th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), Durgapur, India, pp. 308–312. [Google Scholar]
  • Rezaei N., Tarimoradi H., Deihimi M. (2021) A coordinated management scheme for power quality and load consumption improvement in smart grids based on sustainable energy exchange based model, Sustain. Energy Technol. Assessments 51, 101903. [Google Scholar]
  • Qays O., Ahmad I., Yasmin F. (2023) Key communication technologies, applications, protocols and future guides for IoT-assisted smart grid systems: a review, Energy Rep. 9, 2440–2452. [CrossRef] [Google Scholar]
  • Babayomi O., Zhang Z., Rodriguez J. (2022) Smart grid evolution: predictive control of distributed energy resources – a review, Int. J. Electr. Power Energy Syst. 147, 108812. [Google Scholar]
  • Goudarzi A., Ghayoor F., Waseem M., Fahad S., Traore I. (2022) Review a survey on IoT-enabled smart grids: emerging, applications, challenges, and outlook, Energies 15, 6984. [CrossRef] [Google Scholar]
  • Kumar R., Bansal H.O., Agrawal H.P. (2019) Development of fuzzy logic controller for photovoltaic integrated shunt active power filter, J. Intell. Fuzzy Syst. 36, 1–13. [CrossRef] [Google Scholar]
  • Refaat S.S., Abu-Rub H., Trabelsi M., Mohamed A. (2018) Reliability evaluation of smart grid system with large penetration of distributed energy resources, in: 2018 IEEE International Conference on Industrial Technology (ICIT), Lyon, France, 20–22 February, IEEE, pp. 1279–1284. [Google Scholar]
  • Stock S., Babazadeh D., Becker C. (2021) Applications of artificial intelligence in distribution power system operation, IEEE Access 9, 150098–150119. [CrossRef] [Google Scholar]
  • Dong L., Wu W., Guo Q., Satpute M.N., Znati T., Du D.Z. (2021) Reliability aware offloading and allocation in multilevel edge computing system, IEEE Trans. Reliab. 70, 200–211. [CrossRef] [Google Scholar]
  • Wu Y., Dai H.N., Wang H. (2021) Convergence of blockchain and edge computing for secure and scalable IIoT critical infrastructuresin industry 4.0, IEEE Internet Things J. 8, 2300–2317. [CrossRef] [Google Scholar]
  • Henzler K., Maier S.D., Jäger M., Horn R. (2020) SDG-based sustainability assessment methodology for innovations in the field of urban surfaces, Sustainability 12, 44–66. [Google Scholar]
  • Manoj P., Kumar B.Y., Gowtham M., Vishwas D.B., Ajay A.V. (2021) Internet of Things for smart grid applications, Adv. Smart Grid Power Syst. 6, 159–190. [CrossRef] [Google Scholar]
  • Parvin K., Hannan M.A., Mun L.H., Hossain Lipu M.S., Abdolrasol M.G.M., Ker P.J., Muttaqi K.M., Dong Z.Y. (2022) The future energy internet for utility energy service and demand-side management in smart grid: current practices, challenges and future directions, Sustain. Energy Technol. Assess. 53, 102648. [Google Scholar]
  • Ullah Z., Al-Turjman F., Mostarda L., Gagliardi R. (2020) Applications of artificial intelligence and machine learning in smart cities, Comput. Commun. 154, 313–323. [CrossRef] [Google Scholar]
  • Ahmad T., Zhang D. (2021) Using the internet of things in smart energy systems and networks, Sustain. Cities Soc. 68, 102783. [CrossRef] [Google Scholar]
  • Alavikia Z., Shabro M. (2022) A comprehensive layered approach for implementing internet of things-enabled smart grid: a survey, Digit. Commun. Netw. 8, 388–410. [CrossRef] [Google Scholar]
  • Amjad Z., Shah M.A., Maple C., Khattak H.A., Ameer Z., Mussadiq S. (2020) Towards energy efficient Smart Grids using bio-inspired scheduling techniques, IEEE Access 8, 158947–158960. [CrossRef] [Google Scholar]
  • Hu S., Chen X., Ni W., Wang X., Hossain E. (2020) Modeling and analysis of energy harvesting and smart grid-powered wireless communication networks: a contemporary Survey, IEEE Trans. Green Commun. Netw. 4, 461–496. [CrossRef] [Google Scholar]
  • Narasipuram R.P., Mopidevi S. (2023) A dual primary side FB DC-DC converter with variable frequency phase shift control strategy for on/off board EV charging applications, in: 2023 9th IEEE India International Conference on Power Electronics (IICPE), Sonipat, India, 28–30 November, IEEE, pp. 1–5. [Google Scholar]
  • Dias L., Rizzetti T.A. (2021) A review of privacy-preserving aggregation schemes for Smart Grid, IEEE Lat. Am. Trans. 19, 1109–1120. [CrossRef] [Google Scholar]
  • Eqra N., Vatankhah R., Eghtesad M. (2020) A novel adaptive multi-critic based separated-states neuro fuzzy controller: Architecture and application to chaos control, ISA Trans. 26, 111, 57–70. [Google Scholar]
  • Zeng Z., Dong M., Miao W., Zhang M., Tang H.A. (2021) Data-driven approach for blockchain-based Smart Grid system, IEEE Access 9, 70061–70070. [CrossRef] [Google Scholar]
  • Mohammadali A., Haghighi M.S. (2021) A privacy-preserving homomorphic scheme with multiple dimensions and fault tolerance for metering data aggregation in Smart Grid, IEEE Trans. Smart Grid 12, 5212–5220. [CrossRef] [Google Scholar]
  • Misra S., Mondal A., Kumar P.V.S., Pal S.K. (2022) QoS-aware sustainable energy distribution in Smart Grid, IEEE Trans. Sustain. Comput. 7, 211–220. [Google Scholar]
  • Tabassum S., Babu A.R.V., Dheer D.K. (2023) Hybrid smart microgrid system modelling, design and control using an adaptive neuro fuzzy inference system, In: 2023 3rd International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET), Patna, India, 21–22 December, pp. 1–2. [Google Scholar]
  • Sotiriadis S., Bessis N., Amza C., Buyya R. (2019) Elastic load balancing for dynamic virtual machine reconfiguration based on vertical and horizontal scaling, IEEE Trans. Serv. Comput. 12, 319–334. [CrossRef] [Google Scholar]
  • Minh Q.N., Nguyen V.-H., Quy V.K., Ngoc L.A., Chehri A., Jeon G. (2022) Edge computing for IoT-enabled smart grid: the future of energy, Energies 15, 17, 6140. [CrossRef] [Google Scholar]
  • Vijay Babu A.R., Srinivasa Rao G., Manoj Kumar P., Suman S., Sihari Babu A., Umamaheswararao Ch, Ravi Teja A.J.R. (2015) Energy and green house gas payback times of an air breathing fuel cell stack, J. Electr. Eng. 15, 4, 52–62. [Google Scholar]
  • Sagiroglu S., Terzi R., Canbay Y., Colak I. (2017) Big data issues in Smart Grid systems, IEEE Int.Conf. Renewable Energy Res. Appl. 5, 1007–1012. [Google Scholar]
  • Fugini M., Finocchi J., Locatelli P. (2021) A big data analytics architecture for smart cities and smart companies, Big Data Res. 24, 100192. [CrossRef] [Google Scholar]
  • Zhao S., Blaabjerg F., Wang H. (2021) An overview of artificial intelligence applications for power electronics, IEEE Trans. Power Electron. 36, 4633–4658. [CrossRef] [Google Scholar]
  • Dalipi F., Yayilgan S.Y. (2016) Security and privacy considerations for IoT application on Smart Grids: survey and research challenges, in: 2016 IEEE 4th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW), Austria, Vienna, 22–24 August, IEEE, pp. 63–68. [Google Scholar]
  • Narasipuram R.P., Mopidevi S. (2024) An industrial design of 400 V–48 V, 98.2% peak efficient charger using E-mode GaN technology with wide operating ranges for xEV applications, Int. J. Numer. Model. Electron. Networks Devices Fields 37, e3194. [CrossRef] [Google Scholar]
  • Panda D.K., Das S. (2021) Smart grid architecture model for control, optimization and data analytics of future power networks with more renewable energy, J. Clean. Prod. 301, 126877. [CrossRef] [Google Scholar]
  • Divya R., Manjula G. (2022) Tripta Thakur, A smart microgrid system with artificial intelligence for power-sharing and power quality improvement, Energies 15, 5409. [CrossRef] [Google Scholar]
  • Jaradat M., Jarrah M., Bousselham A., Jararweh Y., Al-Ayyoub M. (2015) The internet of energy: smart sensor networks and big data management for Smart Grid, Procedia Comput. Sci. 56, 592–597. [CrossRef] [Google Scholar]
  • Narasipuram R.P., Mopidevi S. (2023) Parametric modelling of interleaved resonant DC–DC converter with common secondary rectifier circuit for xEV charging applications, in: 2023 International Conference on Sustainable Emerging Innovations in Engineering and Technology (ICSEIET), Ghaziabad, India, 14–15 September, IEEE, pp. 842–846. [Google Scholar]
  • Moreno Escobar J.J., Morales Matamoros O., Tejeida Padilla R., Lina Reyes I., Quintana Espinosa H. (2021) A comprehensive review on smart grids: challenges and opportunities, Sensors 21, 69–78. [Google Scholar]
  • Mohammed A., Ali I.K. (2022) A survey on delay time in Smart Grid communication networks using D2D, Global Sci. J. 10, 2320–9186. [Google Scholar]
  • Zhang G., Li J., Bamisile O., Cai D., Huang Q. (2023) A novel data-driven time-delay attack evaluation method for wide-area cyber-physical smart grid systems, Sustain. Energy Grids Netw. 32, 100960. [Google Scholar]
  • Sivarajan S., Sundarsingh Jebaseelan S.D. (2022) Efficient adaptive deep neural network model for securing demand side management in IoT enabled smart grid, Renew. Energy Focus 42, 277–284. [CrossRef] [Google Scholar]
  • Khetarpal P., Tripathi M.M. (2020) A critical and comprehensive review on power quality disturbance detection and classification, Sustain. Comput. Inform. Syst. 28, 100417. [Google Scholar]
  • Narasipuram R.P., Mopidevi S. (2024) Assessment of E-mode GaN technology, practical power loss, and efficiency modelling of iL2C resonant DC-DC converter for xEV charging applications, J. Energy Stor. 91, 112008. [CrossRef] [Google Scholar]
  • Vijay Babu A.R., Rajyalakshmi V., Suresh K. (2017) Renewable energy integrated high gain dc-dc converter with multilevel inverter for water pumping applications, J. Adv. Res. Dynam. Control Syst. 9, 172–190. [Google Scholar]
  • Vijay Babu A.R., Srinivasa Rao G., Manoj Kumar P. (2020) A novel diagnostic technique to detect flooding and dehydration states of an air breathing fuel cell used in fuel cell vehicles, Int. J. Hybrid Electr. Vehicles 12, 32–43. [CrossRef] [Google Scholar]
  • Ribeiro E.G., Mendes T.M., Dias G.L., Faria E.R., Viana F.M., Barbosa B.H., Ferreira D.D. (2018) Real-time system for automatic detection and classification of single and multiple power quality disturbances, Measurement 128, 276–283. [CrossRef] [Google Scholar]
  • Iqbal F., Jamil S., Ahmad D. (2021) A novel block chain based, integrity and reliable veterinary clinic information management system using predictive analytics for provisioning of quality health services, IEEE Access 9, 8069–8098. [CrossRef] [Google Scholar]
  • Chaitanya S., Patnaik N.R., Murthy K.V.S.R. (2017) A novel seven level symmetrical multilevel inverter topology, in: 2017 Third International Conference on Advances in Electrical, Electronics, Information, Communication and Bioinformatics (AEEICB), Chennai, India, 27–28 February, IEEE, pp. 432–435. [Google Scholar]
  • Chaitanya S., Patnaik N.R., Raju C.B.A. (2018) A novel transformerless asymmetrical fifteen level inverter topology for renewable energy applications, in: 2018 Fourth International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), Chennai, India, 27–28 February, IEEE 1, 1–4. [Google Scholar]
  • Sun Y., Song H., Jara A.J., Bie R. (2016) Internet of things and big data analytics for smart and connected communities, IEEE Access 4, 766–773. [CrossRef] [Google Scholar]
  • Chen L., et al. (2023) Advances in sensor technology for smart grids, Sensors 23, 5, 1002–1019. [CrossRef] [PubMed] [Google Scholar]
  • Singh R., Gupta A. (2023) Predictive maintenance in IoT-enabled smart grids, J. Indust. Inform. Integr. 11, 3, 300–317. [Google Scholar]
  • Liu X., et al. (2023) Addressing interoperability in IoT-based smart grids, IEEE Commun. Mag. 61, 2, 58–64. [Google Scholar]
  • Zhang Y., et al. (2023) Scalable architectures for IoT-enabled smart grids, IEEE Trans. Smart Grid 14, 1, 102–115. [Google Scholar]
  • Sharma S.K., Wang X. (2017) Live data analytics with collaborative edge and cloud processing in wireless IoT networks, IEEE Access 5, 4621–4635. [CrossRef] [Google Scholar]
  • Fouad M., Mali R., Lmouatassime A., Bousmah P.R.M. (7–8 October 2020.) Machine learning and IoT for smart grid. the international archives of the photogrammetry, remote sensing and spatial information sciences, in: volume XLIV-4/W3-2020, 2020 5th International Conference on Smart City Applications, Virtual Safranbolu, Turkey, 7–8 October. [Google Scholar]
  • Feng J., Yao Y., Liu Z., Liu Z. (2024) Electric vehicle charging stations’ installing strategies: Considering government subsidies, Appl. Energy 370, 123552. [CrossRef] [Google Scholar]
  • Ju Y., Liu W., Zhang Z., Zhang R. (2022) Distributed three-phase power flow for ac/dc hybrid networked microgrids considering converter limiting constraints, IEEE Trans. Smart Grid 13, 3, 1691–1708. [CrossRef] [Google Scholar]
  • Zhou Y., Zhai Q., Xu Z., Wu L., Guan X. (2024) Multi-stage adaptive stochastic-robust scheduling method with affine decision policies for hydrogen-based multi-energy microgrid, IEEE Trans. Smart Grid 15, 3, 2738–2750. [CrossRef] [Google Scholar]
  • Shirkhani M., Tavoosi J., Danyali S., Sarvenoee A.K., Abdali A., Mohammadzadeh A., Zhang C. (2023) A review on microgrid decentralized energy/voltage control structures and methods, Energy Rep. 10, 368–380. [CrossRef] [Google Scholar]
  • Duan Y., Zhao Y., Hu J. (2023) An initialization-free distributed algorithm for dynamic economic dispatch problems in microgrid: Modeling, optimization and analysis, Sustain. Energy Grids Netw. 34, 101004. [CrossRef] [Google Scholar]
  • Song J., Mingotti A., Zhang J., Peretto L., Wen H. (2022) Accurate damping factor and frequency estimation for damped real-valued sinusoidal signals, IEEE Trans. Instrum. Measur. 71, 1–4. [Google Scholar]
  • Li T., Hui S., Zhang S., Wang H., Zhang Y., Hui P., Jin D., Li Y. (2024) Mobile user traffic generation via multi-scale hierarchical GAN, ACM Trans. Knowl. Discov. Data 18, 189. [Google Scholar]
  • Liu Y., Fang Z., Cheung M.H., Cai W., Huang J. (2023) Mechanism design for blockchain storage sustainability, IEEE Commun. Mag. 61, 8, 102–107. [CrossRef] [Google Scholar]
  • Meng Q., Jin X., Luo F., Wang Z., Hussain S. (2024) Distributionally robust scheduling for benefit allocation in regional integrated energy system with multiple stakeholders, in: J. Modern Power Syst. Clean Energy, SGEPRI, pp. 1–12. https://doi.org/10.35833/MPCE.2023.000661. [Google Scholar]
  • Yan Z., Wen H. (2021) Electricity theft detection base on extreme gradient boosting in AMI, IEEE Trans. Instrum. Measur. 70, 1–9. [MathSciNet] [Google Scholar]
  • Wang S., Lu T., Hao R., Li J., Guo Y., He X., Han X. (2024) An identification method for anomaly types of active distribution network based on data mining, IEEE Trans. Power Syst. 39, 4, 5548–5560. [CrossRef] [Google Scholar]
  • Suresh K., Venkatesan M., Vijay Babu A.R. (2017) Design and implementation of energy storage system by using converters and renewable energy source, J. Adv. Res. Dynam. Cont. Syst. 9, 5, 259–269. [Google Scholar]
  • Suresh K., Vijay Babu A.R., Venkatesh P.M. (2018) Experimental investigations on grid integrated wind energy storage system using neuro fuzzy controller, Modelling Meas. Control A 91, 123–130. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.