Issue
Sci. Tech. Energ. Transition
Volume 79, 2024
Emerging Advances in Hybrid Renewable Energy Systems and Integration
Article Number 54
Number of page(s) 15
DOI https://doi.org/10.2516/stet/2024047
Published online 20 August 2024
  • Zhang G., Liu F., Wang S., Li J. (2022) Inertia requirement analysis of frequency stability of renewable-dominant power system, Proc. CSU-EPSA 34, 7, 81–87. [Google Scholar]
  • Li W., Jin C., Wen K., Shen J., Liu L. (2018) Active frequency response control under high-power loss, Automation of Electric Power Systems 42, 8, 22–30. [Google Scholar]
  • Wang L., Xie X., Liu Y., Shen H. (2018) Real-time coordinated control of short-term frequency stability for the receiving-end systems with multi-infeed HVDC transmissions, Proc. CSEE 38, 8, 2205–2212. [Google Scholar]
  • Lu Z., Tang H., Qiao Y., Tian X., Chi Y. (2018) The impact of power electronics interfaces on power system frequency control: a review, Electric Power 51, 1, 51–58. [Google Scholar]
  • Du P., Li W. (2020) Frequency response impact of integration of HVDC into a low inertia AC power grid, IEEE Trans. Power Syst. 36, 1, 613–622. [Google Scholar]
  • Xu T., Li G., Yu Z., Zhang J., Wang L. (2017) Design and application of emergency coordination control system for multi-infeed HVDC receiving-end system coping with frequency stability problem, Autom. Electr. Power Syst. 41, 8, 98–104. [Google Scholar]
  • Li W. (2018) On frequency response control of the future grid, Power Gener. Technol. 39, 1, 84–89. [Google Scholar]
  • Sun H., Xu T., Guo Q., Li Y., Lin W. (2019) Analysis on blackout in Great Britain Power Grid on August 9th, 2019 and its enlightenment to the power grid in China. Proc. CSEE, 39(21), 6183–6191. [Google Scholar]
  • Australian Energy Market Operator (2016) Preliminary report-black system event in South Australia on 28 September 2016, Australian Energy Market Operation Limited, Melbourne, Australia. [Google Scholar]
  • Li Z., Wu X., Zhunag K., Wang L., Miu Y. (2017) Analysis and reflection on frequency characteristics of East China Grid after bipolar locking of “9.19” Jinping-Sunan DC transmission line, Autom. Electr. Power Syst. 41, 7, 149–155. [Google Scholar]
  • European research project MicroGrids. Available at http://MicroGrids.power.ece.ntua.gr (accessed on 2008-06-12). [Google Scholar]
  • Lopes J.A.P., Hatziargyriou N., Mutale J., Djapic P., Jenkins N. (2007) Integrating distributed generation into electric power systems: a review of drivers, challenges, and opportunities, Electr. Power Syst. Res. 77, 9, 1189–1203. [CrossRef] [Google Scholar]
  • Huang W., Sun C., Wu Z., Zhang J. (2009) A review on microgrid technology containing distributed generation system, Power Syst. Technol. 33, 9, 14–18. [Google Scholar]
  • Karimi H., Nikkhajoei H., Iravani R. (2008) Control of an electronically-coupled distributed resource unit subsequent to an islanding event, IEEE Trans. Power Deliv. 23, 1, 493–501. [Google Scholar]
  • Katiraei F., Iravani M.R., Lehn P.W. (2005) Micro-grid autonomous operation during and subsequent to the islanding process, IEEE Trans. Power Deliv. 20, 1, 248–257. [CrossRef] [Google Scholar]
  • Zhang C., Chen M., Wang Z. (2011) Study on control scheme for smooth transition of micro-grid operation modes, Prot. Control Mod. Power Syst. 39, 20, 1–10. [Google Scholar]
  • Xu X., Zhou X., Ma Y., Gao Z. (2016) Microgrid operation controller based on ADRC, High Volt. Eng. 42, 7, 3336–3346. [Google Scholar]
  • Olivares D.E., Mehrizi-Sani A., Etemadi A.H., Canizares C.A., Iravani R., Kazerani M., Hajimiragha A.H., Gomis Bellmunt O., Saeedifard M., Palma Behnke R., Jiménez Estévez G.A., Hatziargyriou N.D. (2014) Trends in microgrid control, IEEE Trans. Smart Grid 5, 4, 1905–1919. [CrossRef] [Google Scholar]
  • Li C., Chaudhary S.K., Savaghebi M., Vasquez J.C., Guerrero J.M. (2017) Power flow analysis for low-voltage AC and DC microgrids considering droop control and virtual impedance, IEEE Trans. Smart Grid 8, 6, 2754–2764. [CrossRef] [Google Scholar]
  • Yuen C., Oudalov A., Timbus A. (2010) The provision of frequency control reserves from multiple microgrids, IEEE Trans. Ind. Electron. 58, 1, 173–183. [Google Scholar]
  • Ipakchi A., Albuyeh A. (2009) Grid of the future, IEEE Power Energy Mag. 7, 2, 52–62. [CrossRef] [Google Scholar]
  • Hajimiragha A.H., Zadeh M. (2014) Research and development of a microgrid control and monitoring system for the remote community of Bella Coola: challenges, solutions, achievements and lessons learned, in: 2013 IEEE International Conference on Smart Energy Grid Engineering (SEGE), 28–30 August, Oshawa, ON, Canada, IEEE, pp. 1–6. [Google Scholar]
  • Nandanoori, S.P., Kundu, S., Du, W., Tuffner F.K., Schneider K.P. (2020) Distributed small-signal stability conditions for inverter-based unbalanced microgrids, IEEE Trans. Power Syst. 35, 5, 3981–3990. [CrossRef] [Google Scholar]
  • Milosevic M., Andersson G. (2005) Generation control in small isolated power systems, in: Proceedings of the 37th Annual North American Power Symposium, 25–25 October, Ames, IA, USA, IEEE, pp. 524–529. [Google Scholar]
  • Pouryekta A., Ramachandaramurthy V.K., Mithulananthan N., Arulampalam A. (2018) Islanding detection and enhancement of micro-grid performance, IEEE Syst. J. 12, 4, 1–11. [Google Scholar]
  • Wang, C.S. (2013) Analysis and simulation theory of microgrid, in: Proceedings of the International Conference on Power Engineering and Renewable Energy, Science Press, Beijing, pp. 341–344. [Google Scholar]
  • Lu H.W., Yuan X.F., Zhang L.H. (2022) Improved VF control strategy for flexible access microgrid, Electr. Power Sci. Eng. 38, 2, 1–8. [Google Scholar]
  • Wang Y., Tu J., Chen Q., Pan C.Y. (2023) Research on droop control of microgrid based on virtual negative resistance, J. Hubei Normal Univ. Nat. Sci. Ed. 43, 2, 68–74. [Google Scholar]
  • Shen C., Shuai Z., Cheng H. (2021) Transient synchronization stability analysis of system with paralleled virtual synchronous generators and current-controlled converters, Autom. Electr. Power Syst. 45, 10, 115–123. [Google Scholar]
  • Zhong Q.C., Weiss G. (2011) Synchronverters: inverters that mimic synchronous generators, IEEE Trans. Ind. Electron. 58, 4, 1259–1267. [CrossRef] [Google Scholar]
  • Zheng T., Chen L., Chen T., Mei S. (2015) Review and prospect of virtual synchronous generator technologies, Autom. Electr. Power Syst. 39, 21, 165–175. [Google Scholar]
  • Zhang X., Ni H., Chu Z., Li F., Li C. (2022) All-digital wireless power transmission frequency tracking control method, Electr. Mach. Control 26, 2, 131. [Google Scholar]
  • Wan X., Zhan Z., Ding X., Xi R., Wang S. (2020) Improved control strategy of multi-inverter parallel based on virtual synchronous generator, Electr. Mach. Control 24, 2, 118. [Google Scholar]
  • Lin X., Li F., Liu B. (2017) Control strategy of grid-connected inverters for unbalanced voltage in microgrids, Equipment Manuf. Technol. 06, 161–163+191. [Google Scholar]
  • Beck H.P., Hesse R. (2007) Virtual synchronous machine, in: 9th International Conference on Electrical Power Quality and Utilisation, 09–11 October, Barcelona, Spain, IEEE, pp. 1–6. [Google Scholar]
  • Ding M., Yang X., Su J. (2009) Control strategies of inverters based on virtual synchronous generator in microgrid, Autom. Electr. Power Syst. 33, 8, 89–93. [Google Scholar]
  • Sakimoto K., Miura Y., Ise T. (2011) Stabilization of a power system with a distributed generator by a virtual synchronous generator function, in: 8th International Conference on Power Electronics – ECCE Asia, 30 May–03 June, Jeju, Korea (South), IEEE, pp. 1498–1505. [Google Scholar]
  • Lyu Z., Sheng W., Zhong Q., Liu H., Zeng Z., Yang L., Liu L. (2014) Virtual synchronous generator and its applications in micro-grid, Proc. CSEE 34, 16, 2591–2603. [Google Scholar]
  • Jin J., Wang H. (2020) Seamless switching strategy of microgrid based on virtual synchronous machine, Electr. Power Technol. 519, 165–167+171. [Google Scholar]
  • Zhang X., Zhang X., Kong B., Tang Y., Wang Y. (2014) Research on multiple master-slave control strategies for microgrids, Prot. Control Mod. Power Syst. 42, 9, 20–25. [Google Scholar]
  • Zhou L., Ren Y., Chen Q., Wu X., Jia D. (2021) Research on a new type of master-slave control strategy for microgrid operation, Renew. Energy 39, 8, 1100–1106. [Google Scholar]
  • Cheng Q., Chu S., Cheng Y., Yang X., Zhang Q. (2016) Hybrid coordination control strategy of microgrid with improved droop control, Autom. Electr. Power Syst. 40, 20, 69–75. [Google Scholar]
  • Cui Y., Zhou J., Wang T., Zhang W., Xue Y. (2017) Master-slave control strategy of microgrid based on fuzzy PI algorithm, Guangdong Electr. Power 30, 6, 36–39. [Google Scholar]
  • Wang L., Peng Y., Wu T., Wei W., Song W. (2020) Improved master-slave control in islanded mode of AC microgrid with PV and storage, High Volt. Eng. 46, 10, 3530–3541. [Google Scholar]
  • Chen T., Li Z., Lai X., Zhou J., li B. (2019) Improved master-slave control strategy for islanded microgrids, Proc. CSEE 31, 11, 45–52. [Google Scholar]
  • Wang Q., Yuan Y., Wang C., Li Y. (2017) Research on equal control strategy for multiple micro-source distribution networks, Comput. Digital Eng. 45, 10, 1949–1954. [Google Scholar]
  • Wang L., Zhou X., Li S., Li Y. (2017) Research on equal control strategy of microgrid based on improved power loop, Electr. Power China 50, 9, 171–177. [Google Scholar]
  • Ma Y., Yang P., Wu J. (2015) Hybrid control strategy for microgrid with multiple distributed energy sources, Autom. Electr. Power Syst. 39, 11, 103–109. [Google Scholar]
  • Wu L., Lei A., Hao X. (2019) Networked hierarchical control of islanded microgrid voltages and frequencies, Control Eng. 26, 1, 162–169. [Google Scholar]
  • Huang X., Wang K., Li G., Zhang Z. (2019) Hierarchical control system and control strategy for microgrid with multiple parallel-connected DGs, Proc. CSEE 39, 13, 3766–3776. [Google Scholar]
  • Luo B., Wei C., Liang K., Xu S. (2021) Design and simulation of hierarchical control strategy for islanded microgrid based on PLECS, Electr. Appl. 40, 2, 85–92. [Google Scholar]
  • Yu H., Zhang X., Li Z., Tan Z. (2020) Hierarchical control strategy of islanded microgrid based on power quality level, J. Electr. Power Sci. Technol. 35, 6, 68–75. [Google Scholar]
  • Wen Z., Zhang Y., Pan X., Sheng Y., Liu Q. (2013) Study on hybrid energy storage system of independent photovoltaic system with supercapacitors and batteries, Zhejiang Electr. Power 32, 11, 57–62. [Google Scholar]
  • Sun X., Lv Q. (2012) Improved PV control of grid-connected inverter in low voltage micro-grid, Trans. China Electrotechn. Soc. 27, 8, 77–84. [Google Scholar]
  • Zhang X., Zhou B. (2018) Study on fuzzy control strategy based on micro-grid energy storage system, Smart Power 46, 4, 16–21. [Google Scholar]
  • Li Y., Guo T., Yuan Y. (2017) Active and frequency control strategy of microgrid based on improved droop control, Electr. Meas. Instrum. 54, 12, 60–64. [Google Scholar]
  • Zhao J., Chen L. (2023) Voltage and frequency coordinated control strategy of energy storage and SVG in islanded microgrid, Electr. Drive Autom. 53, 5, 49–55. [Google Scholar]
  • Wu Q., Chu X., Yu S., Liu L., Chen Y. (2023) SOC balancing strategy for low voltage AC microgrid with different capacity energy storage units based on improved P-E droop control, Acta Energ. Sol. Sin. 44, 4, 266–275. [Google Scholar]
  • Lu K., Liu K., Dong S. (2022) Frequency adaptive control of microgrid based on fuzzy single-neuron PI, Electr. Power Eng. Technol. 41, 5, 131–139. [Google Scholar]
  • Liu X., Zhang J., Wu Z. (2018) A sag control method for frequency in hybrid energy storage microgrid, Elect. Autom. 40, 6, 13–15+44. [Google Scholar]
  • Li J., Su J., Shi Y., Yang X. (2018) Current equalization control of microgrid inverters under unbalanced load conditions, Acta Energ. Sol. Sin. 39, 8, 2325–2334. [Google Scholar]
  • Ding B., Ji Y., Wang Y., Su J., Li R. (2021) LVRT optimization control of photovoltaic inverter in islanded microgrid under asymmetric faults, Contr. Eng. 28, 10, 2060–2069. [Google Scholar]
  • Chen X., Ji Q., Liu F. (2014) Smooth switching control strategy based on master-slave structure in microgrid, Proc. CSEE 29, 2, 163–170. [Google Scholar]
  • Wang J., Tang B., He X. (2024) Mode switching and stability control of master-slave microgrid in grid-connected and islanded modes, Power Electron. Technol. 58, 4, 100–104. [Google Scholar]
  • Zhong J., Chen R., Huang M., Zhang J., Yan B., Zhang Z. (2022) Adaptive parameter virtual synchronous machine control strategy for independent microgrid converter, Mod. Electron. Techn. 45, 11, 167–171. [Google Scholar]
  • Li F., Qin W., Ren C., Wang Q., Han X., Wang J. (2019) Virtual synchronous motor control strategy of hybrid microgrid AC/DC bus interface converter. Proc. CSEE, 39, 13, 3776–3788. [Google Scholar]
  • Chen D., Xu Y., Huang A.Q. (2017) Integration of DC microgrids as virtual synchronous machines into the AC grid, IEEE Trans. Ind. Electron. 64, 9, 7455–7466. [CrossRef] [Google Scholar]
  • Xie L., Li Y., Xiao J., Xu B., Ye Y., Yang J. (2022) Comprehensive control of wind-storage microgrid based on improved virtual synchronous machine, Sci. Technol. Eng. 22, 22, 9660–9668. [Google Scholar]
  • Yang X., Jin H., Liu Z. (2024) Research on adaptive control strategy of virtual synchronous machine applied for the photovoltaic and energy storage inverter, J. Electr. Power Sci. Technol. 39, 2, 181–189. [Google Scholar]
  • Yang X., Zheng Y., Xu Z., Ma J. (2022) Research on grid-connected/off-grid switching control technology for photovoltaic energy storage integrated inverter, Power Electron. Technol. 56, 1, 79–82. [Google Scholar]
  • Wang S., Du W., Wang H., Lin L., Chen W. (2018) Research on microgrid grid-connected/off-grid switching technology based on improved nonlinear droop control, Electr. Meas. Instrum. 55, 16, 112–118. [Google Scholar]
  • Xiao H., Yu T., Feng Z., Du Y. (2023) Smooth switching strategy for microgrid based on improved droop control using whale optimization algorithm, J. Beihua Univ. Nat. Sci. 24, 1, 128–133. [Google Scholar]
  • Xu W., Wang L., Bai Y., He S. (2023) Research on frequency and smooth switching control of microgrid system based on fuzzy droop, J. Power Supply 1–13. [Google Scholar]
  • Xu X., Zhou X. (2018) Smooth switching control strategy for microgrid operation modes of islanded/grid-connected, High Volt. Eng. 44, 8, 2754–2760. [Google Scholar]
  • Meng R., Liu J., Wen B. (2015) Hybrid energy storage control and system hierarchical coordinated control strategy for DC microgrids, High Volt. Eng. 41, 7, 2186–2193. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.