Issue |
Sci. Tech. Energ. Transition
Volume 79, 2024
Decarbonizing Energy Systems: Smart Grid and Renewable Technologies
|
|
---|---|---|
Article Number | 52 | |
Number of page(s) | 19 | |
DOI | https://doi.org/10.2516/stet/2024046 | |
Published online | 14 August 2024 |
- Bevrani H. (2009) Intelligent automatic generation control, Springer, New York. [Google Scholar]
- Kumar I.P., Kothari D.P. (2005) Recent philosophies of automatic generation control strategies in power systems, IEEE Trans. Power Syst. 20, 1, 346–357. [Google Scholar]
- Li M., McCalley J.D. (2012) Influence of renewable integration on frequency dynamics, in: 2012 IEEE Power and Energy Society General Meeting. [Google Scholar]
- Jaiganesh K., Duraiswamy K. (2012) Dump power control techniques for standalone hybrid wind/solar power generation control, in: 2012 International Conference on Emerging Trends in Electrical Engineering. [Google Scholar]
- Ela E., Diakov V., Ibanez E., Heaney M. (2013) Impacts of variability and uncertainty in solar photovoltaic generation at multiple timescales. [CrossRef] [Google Scholar]
- Tiwari S.K., Singh B., Goel P.K. (2016) Design and control of micro-grid fed by renewable energy generating sources, in: 2016 IEEE 6th International Conference on Power Systems. [Google Scholar]
- Rezkallah M., Sharma S., Chandra A., Singh B. (2016) Implementation and control of small-scale hybrid standalone power generation system employing wind and solar energy, in: 2016 IEEE Industry Applications Society Annual Meeting. [Google Scholar]
- Saidi A., Chellali B. (2017) Simulation and control of solar wind hybrid renewable power system, in: 2017 6th International Conference on Systems and Control. [Google Scholar]
- Saberi M., Ahmadi S.A., Ardakani F.J., Riahy G.H. (2018) Optimal sizing of hybrid PV and wind energy system with backup of redox flow battery to postpone grid expansion investments, J. Renew. Sustain. Energy 10, 2, 055903. [CrossRef] [Google Scholar]
- Mohammad N., Debnath K., Rahman M., Arifin M.S. (2020) Optimal power delivery from hybrid micro-grid to provide frequency regulation, Adv. Electr. Electron. Eng. 18, 4, 879–884. [Google Scholar]
- Mandal R., Chatterjee K. (2020) Frequency control and sensitivity analysis of an isolated microgrid incorporating fuel cell and diverse distributed energy sources, Int. J. Hyd. Energy 45, 23, 13009–13024. [CrossRef] [Google Scholar]
- Gulzar M., Iqbal A., Sibtain D., Khalid M. (2023) An innovative converterless solar PV control strategy for a grid connected hybrid PV/wind/fuel-cell system coupled with battery energy storage, IEEE Access 11, 23245–23259. [CrossRef] [Google Scholar]
- Höltinger S., Mikovits C., Schmidt J., Baumgartner J., Arheimer B., Lindström G., Wetterlund E. (2019) The impact of climatic extreme events on the feasibility of fully renewable power systems: a case study for Sweden, Energy 3, 695–713. [CrossRef] [Google Scholar]
- Kewat S., Singh B. (2019) Grid synchronization of WEC-PV-BES based distributed generation system using robust control strategy, in: 2019 IEEE Industry Applications Society Annual Meeting. [Google Scholar]
- Abidin Z. (2020) Pemodelan Matematis Pengaturan Frekuensi Beban Sistem Tenaga Hibrid Turbin Angin-Diesel-PV. [Google Scholar]
- Elgammal A., Ramlal T. (2021) Optimal model predictive frequency control management of grid integration PV/wind/FC/storage battery based smart grid using multi-objective particle swarm optimization MOPSO, WSEAS Trans. Electron. 18, 46–54. [CrossRef] [Google Scholar]
- Tiwari S.K., Singh B., Goel P.K. (2016) Design and control of micro-grid fed by renewable energy generating sources, in: 2016 IEEE 6th International Conference on Power Systems. [Google Scholar]
- Modi N., Yan R. (2016) Low inertia power systems: frequency response challenges and a possible solution, in: 2016 Australasian Universities Power Engineering Conference. [Google Scholar]
- Hole S.R., Goswami A.D. (2024) EPCMSDB: design of an ensemble predictive control model for solar PV MPPT deployments via dual bioinspired optimizations, Sci. Technol. Energy Trans. 79, 8. [Google Scholar]
- Rajendra Hole S., Goswami A.D. (2023) Design GA & PSO-based high-efficiency SEPIC DC-DC converter for context-aware duty cycle control, Electr. Power Components Syst. 1–20. [CrossRef] [Google Scholar]
- Goswami A.D., Hole S.R. (2024) Analysis and comparison of the DC–DC converter with soft computing algorithm, EAI Endors. Trans. Scalable Inform. Syst. 11, 2, 1–8. [Google Scholar]
- Hole S.R., Goswami A.D. (2023) Design of an efficient MPPT optimization model via accurate shadow detection for solar photovoltaic, Energy Harvest. Syst. 10, 2, 377–383. [CrossRef] [Google Scholar]
- Hole S.R., Goswami A.D. (2023) Design of a novel hybrid soft computing model for passive components selection in multiple load Zeta converter topologies of solar PV energy system, Energy Harvest. Syst. 11, 1, 20230029. [CrossRef] [Google Scholar]
- Hole S.R., Goswami A.D. (2022) Quantitative analysis of DC–DC converter models: a statistical perspective based on solar photovoltaic power storage, Energy Harvest. Syst. 9, 1, 113–121. [CrossRef] [Google Scholar]
- Parmar K.P.S., Majhi S., Kothari D.P. (2014) LFC of an interconnected power system with multi-source power generation in deregulated power environment, Int. J. Electr. Power Energy Syst. 57, 277–286. [CrossRef] [Google Scholar]
- Can O., Ayas M.S. (2024) Gorilla troops optimization-based load frequency control in PV-thermal power system, Neural Comput. Appl. 36, 8, 4179–4193. [Google Scholar]
- Johnson M.A., Moradi M.H. (2005) PID control, Springer-Verlag London Limited, London, UK, pp. 47–107. [CrossRef] [Google Scholar]
- Tan K.K., Wang Q.G., Hang C.C. (2012) Advances in PID control, Springer Science & Business Media. [Google Scholar]
- Singh S.P., Prakash T., Singh V.P., Babu M.G. (2017) Analytic hierarchy process based automatic generation control of multi-area interconnected power system using Jaya algorithm, Eng. Appl. Artif. Intell. 60, 35–44. [CrossRef] [Google Scholar]
- Rout U.K., Sahu R.K., Panda S. (2013) Design and analysis of differential evolution algorithm based automatic generation control for interconnected power system, Ain Shams Eng. J. 4, 3, 409–421.. [CrossRef] [Google Scholar]
- Ogata K. (1995) Modern control engineering, 2nd edn., Printice Hall International, India. [Google Scholar]
- Nise N.S. (2006) Control system engineering, 6th edn., John Wiley & Sons, Pomana. [Google Scholar]
- Abdollahzadeh B., Soleimanian G.F., Mirjalili S. (2021) Artificial gorilla troops optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems, Int. J. Intell. Syst. 36, 5887–5958. https://doi.org/10.1002/int.22535. [CrossRef] [Google Scholar]
- Yadav A. (2019) AEFA: artificial electric field algorithm for global optimization, Swarm Evol. Comput. 48, 93–108. [CrossRef] [Google Scholar]
- Yadav A., Kumar N. (2020) Artificial electric field algorithm for engineering optimization problems, Expert Syst. Appl. 149, 113308. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.