Issue |
Sci. Tech. Energ. Transition
Volume 79, 2024
Decarbonizing Energy Systems: Smart Grid and Renewable Technologies
|
|
---|---|---|
Article Number | 9 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.2516/stet/2024004 | |
Published online | 08 February 2024 |
- IEA (2022) World Energy Outlook 2022. IEA, Paris. https://www.iea.org/reports/world-energy-outlook-2022, License: CC BY 4.0 (report); CC BY NC SA 4.0 (Annex A). [Google Scholar]
- IEA (2021) Net Zero by 2050. IEA, Paris. https://www.iea.org/reports/net-zero-by-2050, License: CC BY 4.0. [Google Scholar]
- IEA (2021) Global Hydrogen Review 2021. IEA, Paris. https://www.iea.org/reports/global-hydrogen-review-2021, License: CC BY 4.0. [Google Scholar]
- IEA (2022), Global Hydrogen Review 2022, IEA, Paris. https://www.iea.org/reports/global-hydrogen-review-2022, License: CC BY 4.0. [Google Scholar]
- IEA (2022) Hydrogen. 2022, IEA, Paris. https://www.iea.org/reports/hydrogen, License: CC BY 4.0. [Google Scholar]
- Rik van Rossum J.J., La Guardia G., Wang A., Kühnen L., Overgaag M. (2022) A european hydrogen infrastructure vision covering 28 countries, in European Hydrogen Backbone, https://ehb.eu/files/downloads/ehb-report-220428-17h00-interactive-1.pdf. [Google Scholar]
- Hydrogen Pipelines. Available from: https://www.energy.gov/eere/fuelcells/hydrogen-pipelines (accessed on 20 12 2022). [Google Scholar]
- Huang N. (2021) Start of the longest hydrogen transportation pipeline project in China (in Chinese), Hanguan, p. 31. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7iy_Rpms2pqwbFRRUtoUImHWVjG1nq8sXBV0FhfLtyobd2d3ZaR5X1YtxTtMWFrjWx&uniplatform=NZKPT. [Google Scholar]
- Chen T.P. (2010) Hydrogen delivery infrastructure option analysis, Nexant. [CrossRef] [Google Scholar]
- Schoots K., Rivera-Tinoco R., Verbong G., Van Der Zwaan B (2011) Historical variation in the capital costs of natural gas, carbon dioxide and hydrogen pipelines and implications for future infrastructure, Int. J. Greenhouse Gas Control 5, 6, 1614–1623. [CrossRef] [Google Scholar]
- Florisson O., Huizing R.R. (2005) The safe use of the existing natural gas system for hydrogen (Overview of the Naturalhy-Project), in International Conference on Hydrogen Safety, Pisa, Italy. [Google Scholar]
- Tiekstra G. (2008) The NATURALHY project: first step in assessing the potential of the existing natural gas network for hydrogen delivery, Lunión Médicale Du Canada 114, 3, 213–219. [Google Scholar]
- Patel S. (2020) WindGas Falkenhagen: Pioneering “Green” gas production power, The Magazine of Power Generation and Plant Energy Systems 9, 164. [Google Scholar]
- Anon (2014) McPhy energy role in French power-to-gas GRHYD programme, Fuel Cells Bull. 2, 9–10. [Google Scholar]
- Tommy I. (2019) HyDeploy: The UK’s first hydrogen blending deployment project, Clean Energy 3, 2, 114–125. [CrossRef] [Google Scholar]
- Chaoyang Hydrogen-mixed Natural gas Demonstration Project (in Chinese), 2019; Available from: http://www.snpdri.com/productinfo/341616.html (accessed on 23 12 2022). [Google Scholar]
- Group, R.E.M. (2022) Enbridge announces launch of hydrogen blending project. Renewable Energy Monitor Group (January 20), p. 21–22. [Google Scholar]
- Dadfarnia M., Novak P., Ahn D.C., Liu J.B., Sofronis P., Johnson D.D., Robertson I.M. (2010) Recent advances in the study of structural materials compatibility with hydrogen, Adv. Mater. 22, 10, 1128–1135. [CrossRef] [PubMed] [Google Scholar]
- Makio I. (2009) The hydrogen blistering and cracking, Zairyo-to-Kankyo 27, 8, 412–424. [Google Scholar]
- Popov B.N. (2015) Hydrogen permeation and hydrogen-induced cracking, Corros. Eng. 327–364. [CrossRef] [Google Scholar]
- Johnson W.H. (1874) On some remarkable changes produced in iron and steel by the action of hydrogen and acids, Proc. R. Soc. Lond. 23, 156–163, 168–179. [Google Scholar]
- Johnson W.H. (1875) On some remarkable changes produced in iron and steel by the action of hydrogen and acids, Nature 11, 281, 393–393. [CrossRef] [Google Scholar]
- Karpenko G.V., Litvin A.K., Tkachev V.I., Soshko A.I. (1973) Mechanism of hydrogen embrittlement, Mater. Sci. 9, 4, 367–371. [Google Scholar]
- Stan L. (2019) Discussion of some recent literature on hydrogen-embrittlement mechanisms: addressing common misunderstandings, Corros. Rev. 37, 5, 377–395. https://doi.org/10.1515/corrrev-2019-0017. [CrossRef] [Google Scholar]
- Lynch S.P. (2011) Hydrogen embrittlement (HE) phenomena and mechanisms, Stress Corrosion Cracking 30, 3–4, 90–130. https://doi.org/10.1533/9780857093769.1.90. [CrossRef] [Google Scholar]
- Taketomi S., Imanishi H., Matsumoto R., Miyazaki N. (2013) Dislocation dynamics analysis of hydrogen embrittlement in alpha iron based on atomistic investigations, in 13th International Conference on Fracture 2013 (ICF13), 16–21 June 2013, Beijing, China, pp. 5721–5729. [Google Scholar]
- Bond G.M., Robertson I.M., Birnbaum H.K. (1988) Effects of hydrogen on deformation and fracture processes in high-ourity aluminium, Acta Metall. 36, 8, 2193–2197. [CrossRef] [Google Scholar]
- Birnbaum H.K., Sofronis P. (1994) Hydrogen-enhanced localized plasticity – a mechanism for hydrogen-related fracture, Mater. Sci. Eng. A 176, 1–2, 191–202. [CrossRef] [Google Scholar]
- Nagumo M., Nakamura M., Takai K. (2001) Hydrogen thermal desorption relevant to delayed-fracture susceptibility of high-strength steels, Metall. Mater. Trans. A 32A, 339–347. [CrossRef] [Google Scholar]
- Martin M.L., Robertson I.M., Sofronis P. (2011) Interpreting hydrogen-induced fracture surfaces in terms of deformation processes: A new approach, Acta Mater. 59, 3680–3687. [CrossRef] [Google Scholar]
- Martin M.L., Robertson I.M., Sofronis P. (2011) On the formation and nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels, Acta Mater. 59, 4, 1601–1606. [CrossRef] [Google Scholar]
- Lynch S.P. (2011) Interpreting hydrogen-induced fracture surfaces in terms of deformation processes: A new approach, Scr. Mater. 65, 10, 851–854. [CrossRef] [Google Scholar]
- Dear F.F., Skinner G.C.G. (2017) Mechanisms of hydrogen embrittlement in steels: discussion, Philos. Trans. R. Soc. Math. Phys. Eng. Sci. A 375, 20170032. https://doi.org/10.1098/rsta.2017.0032. [CrossRef] [PubMed] [Google Scholar]
- Djukic M.B., Bakic G. M., Zeravcic V. S., Sedmak A., Rajicic B. (2019) The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion, Eng. Fract. Mech., 216, 106528. https://doi.org/10.1016/j.engfracmech.2019.106528. [CrossRef] [Google Scholar]
- Lynch S. (2012) Hydrogen embrittlement phenomena and mechanisms, Corrosion Rev. 30, 3–4, 105–123. [Google Scholar]
- Nagumo M., Takai K. (2018) The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: Overview, Acta Mater., 16 722–733. https://doi.org/10.1016/j.actamat.2018.12.013. [Google Scholar]
- Griesche A., Dabah E., Kannengiesser T., Kardjilov N., Hilger A., Manke I. (2014) Three-dimensional imaging of hydrogen blister in iron with neutron tomography, Acta Mater. 78, 14–22. [CrossRef] [Google Scholar]
- Popov N.B., Lee J.-W., Djukic M.B. (2018) Hydrogen Permeation and Hydrogen-Induced Cracking, in Handbook of Environmental Degradation of Materials, 3rd edn., Elsevier Inc., pp. 133–162. [CrossRef] [Google Scholar]
- Ren X.-C., Shan G.-B., Chu W.-Y., Su Y. J., Gao K.W., Li J.X., Qiao L.J., Jiang B., Chen G., Cui Y.H. (2005) Nucleation, growth and cracking of hydrogen bubbles (in Chinese), Chin. Sci. Bull. 50, 16, 1689–1692. [CrossRef] [Google Scholar]
- Ren X.C., Zhou Q.J., Chu W.Y., Jinxu L.I., Jing A.Y. (2007) The mechanism of nucleation of hydrogen blister in metals, Sci. Bull. (English) 52, 6, 725–729. [CrossRef] [Google Scholar]
- Ren X.C., Zhou Q.J., Shan G.B., Chu W.Y., Li J.X., Su Y.J., Qiao L.J. (2008) A nucleation mechanism of hydrogen blister in metals and alloys, Mater. Sci. Eng. A. 39A, 87–97. [Google Scholar]
- Yen S.K., Huang I.B. (2003) Critical hydrogen concentration for hydrogen-induced blistering on AISI 430 stainless steel, Mater. Chem. Phys. 80, 3, 662–666. [CrossRef] [Google Scholar]
- Hardie D., Charles E.A., Lopez A.H. (2006) Hydrogen embrittlement of high strength pipeline steels, Corrosion Sci. 48, 12, 4378–4385. [CrossRef] [Google Scholar]
- Kota T., Hikaru K., Takafumi A., Tomohiko O., Naoki M., Yoshitaka N. (2017) In-situ microbending tests of Ni–Cr alloy during cathodic hydrogen charging by electrochemical nanoindentation, ISIJ Int. 57, 3, 564–572. [CrossRef] [Google Scholar]
- Bae D.S., Sung C.E., Bang H.J., Lee S.P., Lee J.K., Son I.S., Cho Y.R., Baek U.B., Nahm S.H. (2014) Effect of highly pressurized hydrogen gas charging on the hydrogen embrittlement of API X70 Steel, Met. Mater. Int. 20, 4, 653–658. [CrossRef] [Google Scholar]
- Nanninga N.E., Levy Y.S., Drexler E.S., Condon R.T., Stevenson A.E., Slifka A.J. (2012) Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments, Corrosion Sci. 59, 1–9. [CrossRef] [Google Scholar]
- Briottet L., Batisse R., De Dinechin G., Langlois P., Thiers L. (2012) Recommendations on X80 steel for the design of hydrogen gas transmission pipelines, Int. J. Hydrogen Energy 37, 11, 9423–9430. [CrossRef] [Google Scholar]
- Dietzel W., Atrens A., Barnoush A. (2011) Gaseous hydrogen embrittlement of materials in energy technologies, in Mechanics of modern test methods and quantitative-accelerated testing for hydrogen embrittlement, R.P. Gangloff, B.P. Somerday (eds.), Woodhead Publishing Limited, Cambridge, UK, pp. 237–273. [Google Scholar]
- Armstrong D., Rogers M.E., Roberts S.G. (2009) Micromechanical testing of stress corrosion cracking of individual grain boundaries, Scr. Mater. 61, 7, 741–743. [CrossRef] [Google Scholar]
- Barnoush A., Dake J., Kheradmand N., Vehoff H. (2010) Examination of hydrogen embrittlement in FeAl by means of in situ electrochemical micropillar compression and nanoindentation techniques, Intermetallics 18, 7, 1385–1389. [CrossRef] [Google Scholar]
- Iqbal F., Ast J., Göken M., Durst K. (2012) In situ micro-cantilever tests to study fracture properties of NiAl single crystals, Acta Mater. 60, 3, 1193–1200. [CrossRef] [Google Scholar]
- Amp N.K., Vehoff H. (2012) Novel methods for micromechanical examination of hydrogen and grain boundary effects on dislocations, Philos. Mag. 92, 25–27, 3216–3230. [CrossRef] [Google Scholar]
- Deutges M., Knorr I., Borchers C., Volkert C.A., Kirchheim R. (2013) Influence of hydrogen on the deformation morphology of vanadium (100) micropillars in the α-phase of the vanadium–hydrogen system, Scr. Mater. 68, 1, 71–74. [CrossRef] [Google Scholar]
- Takahashi Y., Kondo H., Asano R., Arai S., Higuchi K., Yamamoto Y., Muto S., Tanaka N. (2016) Direct evaluation of grain boundary hydrogen embrittlement: A micro-mechanical approach, Mater. Sci. Eng. A 661, 211–216. [CrossRef] [Google Scholar]
- Deng Y., Hajilou T., Wan D., Kheradmand N., Barnoush A. (2017) In-situ micro-cantilever bending test in environmental scanning electron microscope: Real time observation of hydrogen enhanced cracking, Scri. Mater. 127, 19–23. [CrossRef] [Google Scholar]
- Hajilou T., Deng Y., Rogne B.R., Kheradmand N., Barnoush A. (2017) In situ electrochemical microcantilever bending test: A new insight into hydrogen enhanced cracking, Scr. Mater. 132, 17–21. [CrossRef] [Google Scholar]
- Deng Y., Barnoush A. (2018) Hydrogen embrittlement revealed via novel in situ fracture experiments using notched micro-cantilever specimens, Acta Mater. 142, 236–247. [CrossRef] [Google Scholar]
- Ast J., Ghidelli M., Durst K., Goeken M., Sebastiani M., Korsunsky A.M. (2019) A review of experimental approaches to fracture toughness evaluation at the micro-scale, Mater. Design 173, 107762. [CrossRef] [Google Scholar]
- Kim D., Jang G.H., Lee T., Lee C.S. (2020) Orientation dependence on plastic flow behavior of hydrogen-precharged micropillars of high-Mn steel, Metals Mater. Int. 26, 11, 1741–1748. [CrossRef] [Google Scholar]
- Zhang T., Wang Y., Zhao W., Tang X., Yang M. (2015) Hydrogen permeation parameters of X80 steel and welding HAZ under high pressure coal gas environment, Acta Metall. Sin. 51, 9, 1101–1110. [Google Scholar]
- Koji I., Motohiro K. (2003) Visualization of hydrogen diffusion in steels by high sensitivity hydrogen microprint technique, Sci. Technol. Adv. Mater., 4, 545–551. [CrossRef] [Google Scholar]
- Wang S.H., Luu W.C., Ho K.F., Wu J.K. (2003) Hydrogen permeation in a submerged arc weldment of TMCP steel, Mater. Chem. Phys. 77, 2, 447–454. [CrossRef] [Google Scholar]
- Yang F.Q., Zhan W.J., Yan T., Zhang H.B., Fang X.R. (2020) Numerical analysis of the coupling between hydrogen diffusion and mechanical behavior near the crack tip of titanium, Math. Prob. Eng. 2020, 3618589. [Google Scholar]
- Sun Y., Cheng Y.F. (2021) Thermodynamics of spontaneous dissociation and dissociative adsorption of hydrogen molecules and hydrogen atom adsorption and absorption on steel under pipelining conditions, Int. J.f Hydrogen Ener. 69, 46. [Google Scholar]
- Jun Song W.A.C. (2013) Atomic mechanism and prediction of hydrogen embrittlement in iron, Nature Mater. 12, 2, 145–151. [CrossRef] [PubMed] [Google Scholar]
- Gallon N., Andrews R.M., Huising O.J.C., Lam-Thanh L. (2021) Hydrogen pipelines–design and materials challenges and mitigations, European Pipeline Research Group (EPRG): Pipeline Technology Conference (PTC), Berlin. [Google Scholar]
- Andrews R.M., Gallon N., Huising O. (2022) Assessing damaged pipelines transporting hydrogen, J. Pipeline Sci. Eng. 2, 3, 100066. [CrossRef] [Google Scholar]
- ISO (2020) Gas Infrastructure – Roadmap for CEN/TC 234 to Identify Standardisation Need on Hydrogen in Natural Gas Infrastructure (replacing: Consequences of Hydrogen in Natural Gas Infrastructure) TC 234 WI 00234080. International Organisation for Standardisation, Geneva. [Google Scholar]
- EARTO (2014) The European Standards Organisaiton and the European Commission’s Joint Research Centre. “Putting Science into Standards: Power-to-Hydrogen and HCNG”, Available from: https://ec.europa.eu/jrc/sites/jrcsh/files/hcng-2014-final-report.pdf. [Google Scholar]
- Melaina M.W., Antonia O., Penev M. (2013) Blending hydrogen into natural gas pipeline networks: a review of key issues, Technical Report NREL/TP-5600-51995, National Renewable Energy Laboratory, Denver, CO. [Google Scholar]
- Hodges J.P., Geary W., Graham S., Hooker P., Goff R. (2015) Injecting Hydrogen into the Gas Network – a Literature Search – RR1047 Research Report, Buxton, Health and Safety Laboratory. [Google Scholar]
- ASME (2019) Hydrogen Piping and Pipelines ASME B31. 12-2019 ASME Code for Pressure Piping, B31, The American Society of Mechanical Engineers, New York. [Google Scholar]
- EIGA (2014) Hydrogen Pipeline Systems, IGS 121/14, European Industrial Gases Association AISBL, Brussels. [Google Scholar]
- Kobayashi H., Naruo Y., Maru Y., Takesaki Y., Miyanabe K. (2018) Experiment of cryo-compressed (90-MPa) hydrogen leakage diffusion, Int. J. Hydrogen Energy 43, 37, 17928–17937. [CrossRef] [Google Scholar]
- Kobayashi H., Daimon Y., Umemura Y., Muto D., Naruo Y., Miyanabe K. (2018) Temperature measurement and flow visualization of cryo-compressed hydrogen released into the atmosphere, Int. J. Hydrogen Energy 43, 37, 17938–17953. [CrossRef] [Google Scholar]
- Zhu J., Pan J., Zhang Y., Li Y., Li H., Feng H., Chen D., Kou Y., Yang R. (2022) Leakage and diffusion behavior of a buried pipeline of hydrogen-blended natural gas, Int. J. Hydrogen Energy 48, 11592–11610. [Google Scholar]
- Mejia A.H., Brouwer J., Kinnon M.M. (2020) Hydrogen leaks at the same rate as natural gas in typical low-pressure gas infrastructure, Int. J. Hydrogen Energy 45, 15, 8810–8826. [CrossRef] [Google Scholar]
- Cariteau B., Tkatschenko I. (2012) Experimental study of the concentration build-up regimes in an enclosure without ventilation, Int. J. Hydrogen Energy 37, 22, 17400–17408. [CrossRef] [Google Scholar]
- De Stefano M., Rocourt X., Sochet I., Daudey N. (2019) Hydrogen dispersion in a closed environment, Int. J. Hydrogen Energy 44, 17, 9031–9040. [CrossRef] [Google Scholar]
- Deborah H.A., Gaël B., David M., Claire S.M., Renato F.M., Didier J., Maud B., Arnaud F., Thomas L. (2018) Consequences of a 12-mm diameter high pressure gas release on a buried pipeline. Experimental setup and results, J. Loss Prev. Process Ind. 54, 183–189. [CrossRef] [Google Scholar]
- Zhang H., Li Y., Xiao J., Jordan T. (2018) Large eddy simulations of the all-speed turbulent jet flow using 3-D CFD code GASFLOW-MPI, Nucl. Eng. Des. 328, 134–144. [CrossRef] [Google Scholar]
- Zhang H., Sauerschell S., Ba Q., Hu G., Jordan T., Bajohr S., Xiao J. (2021) Numerical simulation of accidental released hazardous gas dispersion at a methanation plant using GASFLOW-MPI, Int. J. Hydrogen Energy 46, 2, 2804–2823. [CrossRef] [Google Scholar]
- Hu G., Wang F., Ba Q., Xiao J., Jordan T. (2021) Numerical investigation of light gas release, stratification and dissolution in TH22 test facility using 3-D CFD code GASFLOW-MPI, Int J Hydrogen Ener. 46, 46, 23074–23987. [Google Scholar]
- Xiao J., Kuznetsov M., Travis J.R. (2018) Experimental and numerical investigations of hydrogen jet fire in a vented compartment, Int. J. Hydrogen Energy 43, 21, 10167–10184. [CrossRef] [Google Scholar]
- Li H., Cao X., Du H., Teng L., Shao Y. (2022) Numerical simulation of leakage and diffusion distribution of natural gas and hydrogen mixtures in a closed containe, Int. J. Hydrogen Energy 2022, 47, 35928–35939. [CrossRef] [Google Scholar]
- Olvera H.A., Choudhuri A.R. (2006) Numerical simulation of hydrogen dispersion in the vicinity of a cubical building in stable stratified atmospheres, Int. J. Hydrogen Energy 31, 15, 2356–2369. [CrossRef] [Google Scholar]
- Tang X., Edyta D., Makoto A., Koichi H., Nobuyuki T. (2018) Numerical investigation of a high pressure hydrogen jet of 82 MPa with adaptive mesh refinement: Concentration and velocity distributions, Int. J. Hydrogen Energy 43, 18, 9094–9109. [CrossRef] [Google Scholar]
- Vudumu S.K., Koylu U.O. (2009) Detailed simulations of the transient hydrogen mixing, leakage and flammability in air in simple geometries, Int. J. Hydrogen Energy 34, 6, 2824–2833. [CrossRef] [Google Scholar]
- Wilkening H., Baraldi D. (2007) CFD modelling of accidental hydrogen release from pipelines, Int. J. Hydrogen Energy 32, 13, 2206–2215. [CrossRef] [Google Scholar]
- Su Y., Li J., Yu B., Zhao Y. (2022) Numerical investigation on the leakage and diffusion characteristics of hydrogen-blended natural gas in a domestic kitchen, Renew. Energy 2022, 189, 899–916. [CrossRef] [Google Scholar]
- Jia W., Ren Q., Zhang H., Yang M., Wu X., Li C. (2023) Multicomponent leakage and diffusion simulation of natural gas/hydrogen mixtures in compressor plants, Safety Sci. 157, 105916. [CrossRef] [Google Scholar]
- Li Y., Wang Z., Shi X., Fan R. (2022) Numerical investigation of the dispersion features of hydrogen gas under various leakage source conditions in a mobile hydrogen refueling station, Int. J. Hydrogen Energy, 48, 9498–9511. https://doi.org/10.1016/j.ijhydene.2022.12.052. [Google Scholar]
- He J., Kokgil E., Wang L., Hoi D.N. (2016) Assessment of similarity relations using helium for prediction of hydrogen dispersion and safety in an enclosure, Int. J. Hydrogen Energy 41, 34, 15388–15398. [CrossRef] [Google Scholar]
- Wang T., Yang F., Hu Q., Hu S., Li Y., Ouyang M. (2022) Experimental and simulation research on hydrogen leakage of double ferrule joints, Process Saf. Environ. Prot. 160, 839–846. [CrossRef] [Google Scholar]
- Malakhov A.A., Avdeenkov A.V., du Toit M.H., Bessarabov D.G. (2020) CFD simulation and experimental study of a hydrogen leak in a semi-closed space with the purpose of risk mitigation, Int. J. Hydrogen Energy 45, 15, 9231–9240. [CrossRef] [Google Scholar]
- Shu Z., Liang W., Zheng X., Lei G., Qian H. (2021) Dispersion characteristics of hydrogen leakage: comparing the prediction model with the experiment, Energy 236, 14, 121420. [CrossRef] [Google Scholar]
- Pasman H.J., Rogers W.J. (2012) Risk assessment by means of Bayesian networks: A comparative study of compressed and liquefied H2 transportation and tank station risks, Int. J. Hydrogen Energy 37, 22, 17415–17425. [CrossRef] [Google Scholar]
- Kodoth M., Kodoth M., Shu A., Sakamoto J., Kasai N., Miyake A. (2020) Leak frequency analysis for hydrogen-based technology using Bayesian and frequentist methods, Process Saf. Environ. Prot. 2020, 136, 148–156. [CrossRef] [Google Scholar]
- Qiang Z., Ying T., Hongsong L. (2020) Hydrogen leakage detection method for fuel cell engine based on support vector machine, J. Beijing Jiaotong Univ. 44, 1, 84–90 (in Chinese). [Google Scholar]
- Yang M., Yanjing C., Kai W., Wei Q., Qiang L., Meng Z. (2020) A laser sheet method and simulation for rapid visual detection of high pressure hydrogen leakage, Metrol. Measure. Technol. 40, 5, 37–42 (in Chinese). [Google Scholar]
- Falsafi F., Hashemi B., Mirzaei A., Fazio E., Neri G. (2017) Sm-doped cobalt ferrite nanoparticles: A novel sensing material for conductometric hydrogen leak sensor, Ceram. Int. 43, 1, 1029–1037. [CrossRef] [Google Scholar]
- Sun X., Hao L., Chen L., Guo X., Han C., Chen J., Jiao W., Wang R., He X. (2022) Spray deposition of colorimetric H2 detector with Pd/MoO3 nanocomposites for rapid hydrogen leakage monitoring at room temperature, Appl. Surf. Sci. 599, 153878. [CrossRef] [Google Scholar]
- Hall J.E., Hooker P., Jeffrey K.E. (2020) Gas detection of hydrogen/natural gas blends in the gas industry, Int. J. Hydrogen Energy, 46, 12555–12565. [Google Scholar]
- Blokland H., Sweelssen J., Isaac T., Boersma A. (2021) Detecting hydrogen concentrations during admixing hydrogen in natural gas grids, Int. J. Hydrogen Energy 63, 46. [Google Scholar]
- Jo Y.D., Ahn B.J. (2006) Analysis of hazard area associated with hydrogen gas transmission pipelines, Int. J. Hydrogen Energy 31, 14, 2122–2130. [CrossRef] [Google Scholar]
- Schefer R.W., Houf W.G., Williams T.C., Bourne B., Colton J. (2007) Characterization of high-pressure, underexpanded hydrogen-jet flames, Int. J. Hydrogen Energy 32, 12, 2081–2093. [CrossRef] [Google Scholar]
- Mogi T., Horiguchi S. (2009) Experimental study on the hazards of high-pressure hydrogen jet diffusion flames, J. Loss Prevent. Process Indus. 22, 1, 45–51. [CrossRef] [Google Scholar]
- Mogi T., Kim D., Shiina H., Horiguchi S. (2008) Self-ignition and explosion during discharge of high-pressure hydrogen, J. Loss Prevent. Process Indust. 21, 2, 199–204. [CrossRef] [Google Scholar]
- Friedrich A., Breitung W., Stern G., Veser A., Kuznetsov M., Fast G., Oechsler B., Kotchourko N., Jordan T., Travis J.R. (2012) Ignition and heat radiation of cryogenic hydrogen jets, Int. J. Hydrogen Energy 37, 22, 17589–17598. [CrossRef] [Google Scholar]
- Lowesmith B.J., Hankinson G. (2013) Large scale experiments to study fires following the rupture of high pressure pipelines conveying natural gas and natural gas/hydrogen mixtures, Proc. Safety Environ. Protect. 2013, 91, 101–111. [CrossRef] [Google Scholar]
- Panda P.P., Hecht E.S. (2016) Ignition and flame characteristics of cryogenic hydrogen releases, Int. J. Hydrogen Energy. [Google Scholar]
- Mei Y., Shuai J., Zhou N., Ren W. (2022) Flame propagation of premixed hydrogen-air explosions in bend pipes, J. Loss Prevent. Process Indus. 2022, 77, 104790. [CrossRef] [Google Scholar]
- Takeno K., Okabayashi K., Kouchi A., Nonaka T., Chitose K. (2007) Dispersion and explosion field tests for 40 MPa pressurized hydrogen, Int. J. Hydrogen Energy 32, 13, 2144–2153. [CrossRef] [Google Scholar]
- Lowesmith B.J., Mumby C., Hankinson G., Puttock J.S. (2011) Vented confined explosions involving methane/hydrogen mixtures, Int. J. Hydrogen Energy 36, 3, 2337–2343. [CrossRef] [Google Scholar]
- Royle M. (2007) Shirvill LC, and Roberts TA, Vapour cloud explosions from the ignition of methane/hydrogen/air mixtures in a congested region, in International Conference on Hydrogen Safety, San Sebastian, Spain, Sept. 2007, pp. 11–18. [Google Scholar]
- Shirvill L.C., Roberts T.A., Royle M., Willoughby D.B., Sathiah P. (2019) Experimental study of hydrogen explosion in repeated pipe congestion – part 2: Effects of increase in hydrogen concentration in hydrogen-methane-air mixture, Int. J. Hydrogen Energy 44, 5, 3264–3276. [CrossRef] [Google Scholar]
- Wang Z., Zhang H., Pan X., Jiang Y., Jiang J. (2020) Experimental and numerical study on the high-pressure hydrogen jet and explosion induced by sudden released into the air through tubes, Int. J. Hydrogen Energy 45, 7, 5086–5097. [Google Scholar]
- Zhou C., Yang Z., Chen G., Zhang Q., Yang Y. (2022) Study on leakage and explosion consequence for hydrogen blended natural gas in urban distribution networks, Int. J. Hydrogen Energy, 43, 27096–27115. [CrossRef] [Google Scholar]
- Mumby C. (2010) Predictions of explosions and fires of natural gas/hydrogen mixtures for hazard assessment, Loughborough University. [Google Scholar]
- Zhao B., Li S., Gao D., Xu L., Zhang Y. (2022) Research on intelligent prediction of hydrogen pipeline leakage fire based on Finite Ridgelet neural network, Int. J. Hydrogen Energy 2022, 47, 23316–23323. [CrossRef] [Google Scholar]
- Froeling H.A.J., Droge M.T., Nane G.F., Van Wijk A.J.M. (2021) Quantitative risk analysis of a hazardous jet fire event for hydrogen transport in natural gas transmission pipelines, Int. J. Hydrogen Energy 46, 161, 10411–10422. [CrossRef] [Google Scholar]
- Russo P., Marco A.D., Parisi F. (2019) Failure of reinforced concrete and tuff stone masonry buildings as consequence of hydrogen pipeline explosions, Int. J. Hydrogen Energy 44, 38, 21067–21079. [CrossRef] [Google Scholar]
- Viana F.F.C.L., Alencar M.H., Ferreira R.J.P., De A.A.T. (2022) Multidimensional risk assessment and categorization of hydrogen pipelines, Int. J. Hydrogen Energy 2022, 47, 18424–18440. [CrossRef] [Google Scholar]
- Li X., Jia M., Zhang R. (2022) Dispersion modeling and assessment of natural gas containing hydrogen released from a damaged gas transmission pipeline, Int. J. Hydrogen Energy 2022, 47, 35365–35385. [CrossRef] [Google Scholar]
- Hu Q, Zhang X, Hao H. (2022) A review of hydrogen-air cloud explosions: The fundamentals, overpressure prediction methods, and influencing factors, Int. J. Hydrogen Energy, 48, 13705–13730. [Google Scholar]
- Pang L., Wang C., Han M., Xu Z. (2015) A study on the characteristics of the deflagration of hydrogen-air mixture under the effect of a mesh aluminum alloy, J. Hazard. Mater. 299, 174–180. [CrossRef] [Google Scholar]
- Song X., Zuo X., Yang Z., Chen J., Li B. (2020) The explosion-suppression performance of mesh aluminum alloys and spherical nonmetallic materials on hydrogen-air mixtures, Int. J. Hydrogen Energy 45, 56, 32686–32701. [CrossRef] [Google Scholar]
- Golovastov S.V., Bivol G.Y., Alexandrova D. (2019) Evolution of detonation wave and parameters of its attenuation when passing along a porous coating, Exp. Therm. Fluid Sci. 100, 124–134. [CrossRef] [Google Scholar]
- Bivol G., Golovastov S. (2019) Effects of polyurethane foam on the detonation propagation in stoichiometric hydrogen-air mixture, Proc. Safety Environ. Protect. 130, 14–21. [CrossRef] [Google Scholar]
- Long F., Duan Y., Yu S., Jia H., Bu Y., Huang J. (2022) Effect of porous materials on explosion characteristics of low ratio hydrogen/methane mixture in barrier tube, J. Loss Prevent. Process Indus. 80, 104875. [CrossRef] [Google Scholar]
- Wen X., Wang M., Su T., Zhang S., Pan R., Ji W. (2019) Suppression effects of ultrafine water mist on hydrogen/methane mixture explosion in an obstructed chamber, Int. J. Hydrogen Energy, 44, 32332–32342. [CrossRef] [Google Scholar]
- Xia Y., Zhang B., Zhang J., Wang B., Chen L., Wang R., Amanuel G.B., Shi J., Wu W., Wang Z. (2022) Experimental research on combined effect of obstacle and local spraying water fog on hydrogen/air premixed explosion, Int. J. Hydrogen Energy 47, 40099–40115. [CrossRef] [Google Scholar]
- Duan Y., Long F., Huang J., Jia H., Bu Y., Yu S. (2022) Effects of porous materials with different thickness and obstacle layout on methane/hydrogen mixture explosion with low hydrogen ratio, Int. J. Hydrogen Energy 47, 27237–27249. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.