Open Access
Issue
Sci. Tech. Energ. Transition
Volume 80, 2025
Article Number 7
Number of page(s) 13
DOI https://doi.org/10.2516/stet/2024105
Published online 06 January 2025
  • Kharnoob M. M., Sabti L. M. (2021) The limitation and application of geometric buildings and civil structures, E3S Web Conf 318, 04009. [CrossRef] [EDP Sciences] [Google Scholar]
  • Kunelbayev M., Mansurova M., Tyulepberdinova G., Sarsembayeva T., Issabayeva S., Issabayeva D. (2024) Comparison of the parameters of a flat solar collector with a tubular collector to ensure energy flexibility in smart buildings, Int. J. Innov. Res. Sci. Stud. 7, 1, 240–250. [Google Scholar]
  • Stamatiou P. (2024) Quality of life: the role of tourism and renewable energy, Int. J. Appl. Econ. Finance Account. 18, 1, 43–52. [Google Scholar]
  • Towoju O. A., Petinrin M. O. (2023) Climate change mitigation with carbon capture: an overview, Int. J. Sustain. Energy Environ. Res. 12, 1, 1–9. [Google Scholar]
  • Uckun-Ozkan A. (2024) The impact of investor attention on green bond returns: How do market uncertainties and investment performances of clean energy and oil and gas markets affect the connectedness between investor attention and green bond? Asian J. Econ. Model. 12, 1, 53–75. [CrossRef] [Google Scholar]
  • Al Jasimee K. H., Blanco-Encomienda F. J. (2024) Decoding task uncertainty: moderating effects on participative budgeting and budgetary slack dynamics, Total Qual. Manag. Bus. Excell. 35, 7–8, 739–757. [CrossRef] [Google Scholar]
  • Chabok B. S., Sadegh-Samiei M., Jalilvand A., Bagheri A. (2024) A risk-based model for reconfigurable active distribution networks scheduling in the presence of demand-side responsive loads, in: 2024 28th International Electrical Power Distribution Conference (EPDC), IEEE, pp. 1–10. https://doi.org/10.1109/EPDC62178.2024.10571760. [Google Scholar]
  • Ghoreishi E., Abolhassani B., Huang Y., Acharya S., Lou W., Hou Y. T. (2024) Cyrus: A DRL-based puncturing solution to URLLC/eMBB multiplexing in O-RAN, in: 2024 33rd International Conference on Computer Communications and Networks (ICCCN), Kailua-Kona, HI, USA, 29–31 July, IEEE, pp. 1–9. https://doi.org/10.1109/ICCCN61486.2024.10637645. [Google Scholar]
  • Barati Nia A., Moug D. M., Huffman A. P., DeJong J. T. (2022) Numerical investigation of piezocone dissipation tests in clay: Sensitivity of interpreted coefficient of consolidation to rigidity index selection, in: Gottardi G., Tonni L. (eds), Cone Penetration Testing 2022: Proceedings of the 5th International Symposium on Cone Penetration Testing (CPT’22), Bologna, Italy, 8–10 June 2022, 1st ed., CRC Press, pp. 282–287. https://doi.org/10.1201/9781003308829. [Google Scholar]
  • EskandariNasab M., Raeisi Z., Lashaki R. A., Najafi H. (2024) A GRU–CNN model for auditory attention detection using microstate and recurrence quantification analysis, Sci. Rep. 14, 1, 8861. [CrossRef] [Google Scholar]
  • Dokhanian S., Sodagartojgi A., Tehranian K., Ahmadirad Z., Moghaddam P. K., Mohsenibeigzadeh M. (2024) Exploring the impact of supply chain integration and agility on commodity supply chain performance, World J. Adv. Res. Rev. 22, 1, 441–450. [CrossRef] [Google Scholar]
  • Mahbuby H., Amerian Y. (2021) Regional Assimilation of GPS-Derived TEC into GIMs, Pure Appl. Geophys. 178, 4, 1317–1337. [CrossRef] [Google Scholar]
  • Azadmanesh M., Roshanian J., Georgiev K., Todrov M., Hassanalian M. (2024) Synchronization of angular velocities of chaotic leader-follower satellites using a novel integral terminal sliding mode controller, Aerosp. Sci. Technol. 150, 109211. [CrossRef] [Google Scholar]
  • Farrokhi S., Dargie W., Poellabauer C. (2024) Human activity recognition based on wireless electrocardiogram and inertial sensors, IEEE Sens. J. 24, 5, 6490–6499. [CrossRef] [Google Scholar]
  • Moghadam Manesh M. (2023) Using system archetypes to understand rebound effect, in: The 2023 System Dynamics Conference, Chicago, USA, 23–27 July. Available at https://proceedings.systemdynamics.org/2023/papers/P1105.pdf. [Google Scholar]
  • Asgharighajari M., Amziah N., Sulaiman N., Sodeinde S. A. (2015) Design of microfluidic sensing and transport device, J. Biomed. Eng. Technol. 3, 1, 15–20. [Google Scholar]
  • Narimani P., Abyaneh M. D., Golabchi M., Golchin B., Haque R., Jamshidi A. (2024) Digitalization of analysis of a concrete block layer using machine learning as a sustainable approach, Sustainability 16, 17, 7591. [CrossRef] [Google Scholar]
  • Splechtna R., Behravan M., Jelovic M., Gracanin D., Hauser H., Matkovic K. (2024) Interactive design-of-experiments: optimizing a cooling system, IEEE Trans. Vis. Comput. Graph. 1–10. https://doi.org/10.1109/TVCG.2024.3456356. [Google Scholar]
  • EskandariNasab M., Hamdi S. M., Boubrahimi S. F. (2024) Enhancing multivariate time series-based solar flare prediction with multifaceted preprocessing and contrastive learning, arXiv preprint. arXiv.2409.14016. [Google Scholar]
  • Razavi H., Jamali M. R., Emsaki M., Gholian-Jouybari F., Bonakdari H., Hajiaghaei-Keshteli M. (2023) Statistical and data analytics approaches to parameter tuning for enhancing QoS of e-banking transactions: a case study of sample bank, in: 2023 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), IEEE, pp. 516–521. https://doi.org/10.1109/CCECE58730.2023.10288713. [CrossRef] [Google Scholar]
  • Hanif E., Hashemnejad H., Ghafourian M. (2017) The concept of sustainable dwelling epitomized in the courtyards of Iranian houses: a case study of houses in Kashan in the Qajar period, J. Eng. Appl. Sci. 12, 6, 1482–1491. [Google Scholar]
  • Moghadam Manesh M., Khatami F. (2021) A system dynamics model to design a more effective education system, in: The 2021 System Dynamics Conference, Chicago, USA, 26–30 July. Available at https://proceedings.systemdynamics.org/2021/papers/P1022.pdf. [Google Scholar]
  • Hadad M., Attarsharghi S., Dehghanpour Abyaneh M., Narimani P., Makarian J., Saberi A., Alinaghizadeh A. (2024) Exploring new parameters to advance surface roughness prediction in grinding processes for the enhancement of automated machining, J. Manuf. Mater. Process. 8, 1, 41. [Google Scholar]
  • Halimi Z., SafariTaherkhani M., Cui Q. (2024) A generalized framework for assessing equity in ground transportation infrastructure: an exploratory study, arXiv preprint. arXiv.2409.19018. [Google Scholar]
  • Asgharighajari M., Amziah N., Sulaiman N., Sodeinde S. A. (2015) Development of impedance base microfluidic flow sensor, Int. Res. J. Eng. Technol. 2, 9, 680–685. [Google Scholar]
  • Farrokhi S., Dargie W., Poellabauer C. (2024) Reliable peak detection and feature extraction for wireless electrocardiograms. https://doi.org/10.22541/au.172538584.47417086/v1. [Google Scholar]
  • Ma K., Yang J., Liu P. (2020) Relaying-assisted communications for demand response in smart grid: cost modeling, game strategies, and algorithms, IEEE J. Sel. Areas Commun. 38, 1, 48–60. [CrossRef] [Google Scholar]
  • Yang J., Xu W., Ma K., Li C. (2023) A three-stage multi-energy trading strategy based on P2P trading mode, IEEE Trans. Sustain. Energy 14, 1, 233–241. [CrossRef] [Google Scholar]
  • Jiang L., Lai Y., Guo R., Li X., Hong W., Tang X. (2024) Measuring the impact of government intervention on the spatial variation of market-oriented urban redevelopment activities in Shenzhen, China, Cities 147, 104834. [CrossRef] [Google Scholar]
  • Shirkhani M., Tavoosi J., Danyali S., Sarvenoee A. K., Abdali A., Mohammadzadeh A., Zhang C. (2023) A review on microgrid decentralized energy/voltage control structures and methods, Energy Rep. 10, 368–380. [CrossRef] [Google Scholar]
  • Rong Q., Hu P., Yu Y., Wang D., Cao Y., Xin H. (2024) Virtual external perturbance-based impedance measurement of grid-connected converter, IEEE Trans. Ind. Electron. https://doi.org/10.1109/TIE.2024.3436629. [Google Scholar]
  • Rong Q., Hu P., Wang L., Li Y., Yu Y., Wang D., Cao Y. (2024) Asymmetric sampling disturbance-based universal impedance measurement method for converters, IEEE Trans. Power Electron. 39, 12, 15457–15461. [CrossRef] [Google Scholar]
  • Meng Q., Tong X., Hussain S., Luo F., Zhou F., He Y., Liu L., Sun B., Li B. (2024) Enhancing distribution system stability and efficiency through multi-power supply startup optimization for new energy integration, IET Gener. Transm. Distrib. 18, 1, 3487–3500. [CrossRef] [Google Scholar]
  • Li P., Hu J., Qiu L., Zhao Y., Ghosh B. K. (2022) A distributed economic dispatch strategy for power-water networks, IEEE Trans. Control Netw. Syst. 9, 1, 356–366. [CrossRef] [MathSciNet] [Google Scholar]
  • Akbari E., Faraji Naghibi A., Veisi M., Shahparnia A., Pirouzi S. (2024) Multi-objective economic operation of smart distribution network with renewable-flexible virtual power plants considering voltage security index, Sci. Rep. 14, 1, 19136. [CrossRef] [Google Scholar]
  • Navesi R. B., Jadidoleslam M., Moradi-Shahrbabak Z., Naghibi A. F. (2024) Capability of battery-based integrated renewable energy systems in the energy management and flexibility regulation of smart distribution networks considering energy and flexibility markets, J. Energy Storage 98, 113007. [CrossRef] [Google Scholar]
  • Mohseni A., Abedi M., Gharehpetian G. (2013) Generation expansion planning and generation unit location based on IGA and AHP, Energy Eng. Manag. 3, 2, 2–13. [Google Scholar]
  • Mohsenzadeh-Yazdi H., Kebriaei H., Aminifar F. (2024) Multi-agent reinforcement learning in a new transactive energy mechanism, IET Gener. Transm. Distrib. 18, 18, 2943–2955. [CrossRef] [Google Scholar]
  • Tabassum S., Babu A. R. V., Dheer D. K. (2024) A comprehensive exploration of IoT-enabled smart grid systems: power quality issues, solutions, and challenges, Sci. Tech. Energ. Transition 79, 62. [CrossRef] [Google Scholar]
  • Chamandoust H. (2022) Optimal hybrid participation of customers in a smart micro-grid based on day-ahead electrical market, Artif. Intell. Rev. 55, 7, 5891–5915. [CrossRef] [Google Scholar]
  • Khan M.A., Kareem A.K., Askar S., Abduvalieva D., Roopashree R., Prasad K.V., Sharma A., Sharma A., Ghazaly N.M., Mohmmedi M. (2024) Modeling techno-economic multi-objectives of smart homes considering energy optimization and demand management, Sci. Tech. Energ. Transition 79, 61. [CrossRef] [Google Scholar]
  • Wang X., Zhang X., Zhou F., Xu X., Chammam A. B., Ali A. M. (2024) Modeling smart electrical microgrid with demand response and storage systems for optimal operation in critical conditions, Sci. Tech. Energ. Transition 79, 55. [CrossRef] [Google Scholar]
  • Askar S., Sadikova A., Mohammed R. J., Khalaf H. H., Ghazaly N. M., Radhan R. P., Candra O. C. (2024) Optimal demand management of smart energy hybrid system based on multi-objective optimization problem, Sci. Tech. Energ. Transition 79, 53. [CrossRef] [Google Scholar]
  • Mingming S., Jun M., Xiaolong X., Fan W. (2024) Research on the multi-scenario control strategy of an active distribution network based on Rotary Power Flow controller, Sci. Tech. Energ. Transition 79, 51. [CrossRef] [Google Scholar]
  • Shu N., Jiang S., Fan Z., Cao X., Zhang Z. (2024) Energy management strategy of microgrid based on photovoltaic and energy storage system in construction area of Sichuan-Tibet Railway, Sci. Tech. Energ. Transition 79, 49. [CrossRef] [Google Scholar]
  • Chamandoust H., Hashemi A., Bahramara S. (2021) Energy management of a smart autonomous electrical grid with a hydrogen storage system, Int. J. Hydrogen Energy 46, 34, 17608–17626. [CrossRef] [Google Scholar]
  • Behzadian M., Otaghsara S. K., Yazdani M., Ignatius J. (2012) A state-of the-art survey of TOPSIS applications, Expert Syst. Appl. 39, 17, 13051–13069. [CrossRef] [Google Scholar]
  • Elhosseini M. A., El Sehiemy R. A., Rashwan Y. I., Gao X. Z. (2019) On the performance improvement of elephant herding optimization algorithm, Knowl. Based Syst. 166, 58–70. [CrossRef] [Google Scholar]
  • Chamandoust H., Derakhshan G., Hakimi S. M., Bahramara S. (2020) Tri-objective scheduling of residential smart electrical distribution grids with the optimal joint of responsive loads with renewable energy sources, J. Energy Storage 27, 101112. [CrossRef] [Google Scholar]
  • Chamandoust H., Bahramara S., Derakhshan G. (2020) Multi-objective operation of smart stand-alone microgrid with the optimal performance of customers to improve economic and technical indices, J. Energy Storage 31, 101738. [CrossRef] [Google Scholar]
  • Bahrami S, Sheikhi A. (2015) From demand response in smart grid toward integrated demand response in smart energy hub, IEEE Trans. Smart Grid 7, 650–658. [Google Scholar]
  • Pazouki S., Haghifam M. R., Moser A. (2014) Uncertainty modeling in optimal operation of energy hub in presence of wind, storage and demand response, Electr. Power Energy Syst. 61, 335–345. [CrossRef] [Google Scholar]
  • Zonkoly A. (2017) Optimal scheduling of observable controlled islands in presence of energy hubs, Electr. Power Syst. Res. 142, 141–152. [CrossRef] [Google Scholar]
  • Najafi A., Falaghi H., Contreras J., Ramezani M. (2016) Medium-term energy hub management subject to electricity price and wind uncertainty, Appl. Energy 168, 418–433. [CrossRef] [Google Scholar]
  • Maleki Soudmanda B., Nourani Esfetanajb N., Mehdipourc S., Rezaeipoura R. (2017) Heating hub and power hub models for optimal performance of an industrial consumer, Energy Conv. Manag. 150, 425–432. [CrossRef] [Google Scholar]
  • Brahman F., Honarmand M., Jadid S. (2015) Optimal electrical and thermal energy management of a residential energy hub, integrating demand response and energy storage system, Energy Build. 90, 65–75. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.