Open Access
Issue
Sci. Tech. Energ. Transition
Volume 79, 2024
Article Number 92
Number of page(s) 11
DOI https://doi.org/10.2516/stet/2024083
Published online 05 November 2024
  • Narasipuram R.P., Mopidevi S. (2024) An industrial design of 400 V–48 V, 98.2% peak efficient charger using E-mode GaN technology with wide operating ranges for xEV applications, Int. J. Numer. Model. Electron. Netw. Devices Fields 37, 2, e3194. [CrossRef] [Google Scholar]
  • Narasipuram R.P., Mopidevi S. (2023) Parametric modelling of interleaved resonant DC-DC converter with common secondary rectifier circuit for xEV charging applications, in: 2023 International Conference on Sustainable Emerging Innovations in Engineering and Technology (ICSEIET), Ghaziabad, India, 14–15 September, IEEE, pp. 842–846. [Google Scholar]
  • Narasipuram R.P., Mopidevi S. (2023) A dual primary side FB DC-DC converter with variable frequency phase shift control strategy for on/off board EV charging applications, in: 2023 9th IEEE India International Conference on Power Electronics (IICPE), Sonipat, India, 28–30 November, IEEE, pp. 1–5. [Google Scholar]
  • Narasipuram R.P., Mopidevi S., Dianov A., Tandon A.S. (2024) Analysis of scalable resonant DC-DC converter using GaN switches for xEV charging stations, World Elec. Veh. J. 15, 5, 218. [CrossRef] [Google Scholar]
  • Zheng C., Chen H. (2023) Revisiting the linkage between financial inclusion and energy productivity: technology implications for climate change, Sustain. Energy Technol. Assess. 57, 103275. [Google Scholar]
  • Luo J., Zhuo W., Liu S., Xu B. (2024) The optimization of carbon emission prediction in low carbon energy economy under big data, IEEE Access 12, 14690–14702. [CrossRef] [Google Scholar]
  • Li P., Hu J., Qiu L., Zhao Y., Ghosh B.K. (2022) A distributed economic dispatch strategy for power-water networks, IEEE Trans. Control Netw. Syst. 9, 1, 356–366. [CrossRef] [MathSciNet] [Google Scholar]
  • Meng Q., Jin X., Luo F., Wang Z., Hussain S. (2024) Distributionally robust scheduling for benefit allocation in regional integrated energy system with multiple stakeholders, J. Mod. Power Syst. Clean Energy 12, 5, 1631–1642. [CrossRef] [Google Scholar]
  • Wang R., Zhang R. (2023) Techno-economic analysis and optimization of hybrid energy systems based on hydrogen storage for sustainable energy utilization by a biological-inspired optimization algorithm, J. Energy Storage 66, 107469. [CrossRef] [Google Scholar]
  • Wang S., Lu T., Hao R., Wang F., Ding T., Li J., He X., Guo Y., Han X. (2024) An identification method for anomaly types of active distribution network based on data mining, IEEE Trans. Power Syst. 39, 4, 5548–5560. [CrossRef] [Google Scholar]
  • Zhang J., Liu Y., Zang J., Liu Z., Zhou J., Wang J., Shi G. (2024) An embedded DC power flow controller based on full-bridge modular multilevel converter, IEEE Trans. Ind. Electron. 71, 3, 2556–2566. [CrossRef] [Google Scholar]
  • Xu X., Wei Z. (2023) Dynamic pickup and delivery problem with transshipments and LIFO constraints, Comput. Ind. Eng. 175, 108835. [CrossRef] [Google Scholar]
  • Ma K., Yu Y., Yang B., Yang J. (2019) Demand-side energy management considering price oscillations for residential building heating and ventilation systems, IEEE Trans. Ind. Inform. 15, 8, 4742–4752. [CrossRef] [Google Scholar]
  • Yang J., Xu W., Ma K., Li C. (2023) A three-stage multi-energy trading strategy based on P2P trading mode, IEEE Trans. Sustain. Energy 14, 1, 233–241. [CrossRef] [Google Scholar]
  • Chen G., Kuang R., Li W., Cui K., Fu D., Yang Z., Liu Z., Huang H., Yu M., Shen Y. (2024) Numerical study on efficiency and robustness of wave energy converter-power take-off system for compressed air energy storage, Renew. Energy 232, 121080. [CrossRef] [Google Scholar]
  • Ju Y., Liu W., Zhang Z., Zhang R. (2022) Distributed three-phase power flow for AC/DC hybrid networked microgrids considering converter limiting constraints, IEEE Trans. Smart Grid 13, 3, 1691–1708. [CrossRef] [Google Scholar]
  • Navesi R.B., Jadidoleslam M., Moradi-Shahrbabak Z., Naghibi A.F. (2024) Capability of battery-based integrated renewable energy systems in the energy management and flexibility regulation of smart distribution networks considering energy and flexibility markets, J Energy Storage 98, Part A, 113007. [CrossRef] [Google Scholar]
  • Kotha P.R., Attari M., Maschmann M., Bunyak F. (2023) Deep style transfer for generation of photo-realistic synthetic images of CNT forests, in: 2023 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), St. Louis, MO, USA, 27–29 September, IEEE, pp. 1–7. [Google Scholar]
  • Attari M., Nguyen N.P., Palaniappan K., Bunyak F. (2023) Multi-loss topology-aware deep learning network for segmentation of vessels in microscopy images, in: 2023 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), St. Louis, MO, USA, 27–29 September, IEEE, pp. 1–7. [Google Scholar]
  • Chabok B.S., Sadegh-Samiei M., Jalilvand A., Bagheri A. (2024) A risk-based model for reconfigurable active distribution networks scheduling in the presence of demand-side responsive loads, in: 28th International Electrical Power Distribution Conference (EPDC), Zanjan, Iran, Islamic Republic of, 23–25 April, IEEE, pp. 1–10. [Google Scholar]
  • Hagh S.F., Amngostar P., Chen W., Sheridan J., Williams C.J., Morales-Williams A.M., Huston D., Xia T. (2024) A low-cost LoRa optical fluorometer-nephelometer for wireless monitoring of water quality parameters in real time, IEEE Sens. J. 24, 13, 21511–21519. [CrossRef] [Google Scholar]
  • Shabani S., Majkut M., Dykas S., Smołka K., Lakzian E., Ghodrati M., Zhang G. (2024) Evaluation of a new droplet growth model for small droplets in condensing steam flows, Energies 17, 5, 1135. [CrossRef] [Google Scholar]
  • Dokhanian S., Sodagartojgi A., Tehranian K., Ahmadirad Z., Moghaddam P.K., Mohsenibeigzadeh M. (2024) Exploring the impact of supply chain integration and agility on commodity supply chain performance, World J. Adv. Res. Rev. 22, 1, 441–450. [CrossRef] [Google Scholar]
  • Shavandi M., Taghavi A. (2024) Non-linear triple product A*B-B*A derivations on*-algebras, Surv. Math. Appl. 19, 67–78. [MathSciNet] [Google Scholar]
  • Emdadi Derabi M., Sangsefidi M., Rahmani O. (2021) The effect of thickness on the multiwalled carbon nanotubes performance in glass/epoxy composite laminates under dynamic loading, Polym. Compos. 42, 11, 5789–5800. [CrossRef] [Google Scholar]
  • Shabani S., Majkut M., Dykas S., Smołka K., Lakzian E., Zhang G. (2023) Validation of the CFD tools against in-house experiments for predicting condensing steam flows in nozzles, Energies 16, 12, 4690. [CrossRef] [Google Scholar]
  • Shavandi M., Taghavi A. (2023) Maps preserving n-tuple A* B− B* A derivations on factor von Neumann algebras, Publ. Inst. Math. 113, 127, 131–140. [CrossRef] [MathSciNet] [Google Scholar]
  • Shokrollahi H., Emdadi Derabi M. (2024) Deformation of an open sandwich cylindrical shell with CNT reinforced faces using HDQ method, Arab. J. Sci. Eng. https://doi.org/10.1007/s13369-024-09339-1. [Google Scholar]
  • Shabani S., Majkut M. (2024) CFD approach for determining the losses in two-phase flows through the last stage of condensing steam turbine, Appl. Therm. Eng. 253, 123809. [CrossRef] [Google Scholar]
  • Naseri S., Eshraghi S., Talebian S. (2024) Innovative sustainable architecture a lesson learned from amphibious house in the UK, Curr. Opin. 4, 4, 766–777. [Google Scholar]
  • Ashary A., Rayguru M.M., SharafianArdakani P., Kondaurova I., Popa D.O. (2024) Multi-Joint adaptive motion imitation in robot-assisted physiotherapy with dynamic time warping and recurrent neural networks, in: SoutheastCon 2024, Atlanta, GA, USA, 15–24 March, IEEE, pp. 1388–1394. [Google Scholar]
  • Hao Y., Basem A., Bagheritabar M., Jasim D.J., Keivani B., Kareem A.H., Sultan A.J., Salahshour S., Esmaeili S. (2024) The computational study of silicon doping and atomic defect influences on the CNT’s nano-pumping process: molecular dynamics approach, Int. Commun. Heat Mass Transf. 152, 107302. [CrossRef] [Google Scholar]
  • Yousefizad M., Zarasvand M.M., Bagheritabar M., Ghezelayagh M.M., Farahi A., Ghafouri T., Raissi F., Zeidabadi M.A., Manavizadeh N. (2023) Performance investigation of low-power flexible n-ZnO/p-CuO/n-ZnO heterojunction bipolar transistor: simulation study, Micro Nanostructures 180, 207594. [CrossRef] [Google Scholar]
  • An Q., Bagheritabar M., Basem A., Ghabra A.A., Li Y., Tang M., Sabri L.S., Sabetvand R. (2024) The effect of size of copper oxide nanoparticles on the thermal behavior of silica aerogel/paraffin nanostructure in a cylindrical duct using molecular dynamics simulation, Case Stud. Therm. Eng. 60, 104666. [CrossRef] [Google Scholar]
  • Fallahtafti N., Hosseini F., Hadad Y., Rangarajan S., Hoang C.H., Sammakia B. (2024) Experimental characterization and geometrical optimization of a commercial two-phase designed cold plate, Int. Commun. Heat Mass Transf. 155, 107457. [CrossRef] [Google Scholar]
  • Tan B., Chen H., Zheng X., Huang J. (2022) Two-stage robust optimization dispatch for multiple microgrids with electric vehicle loads based on a novel data-driven uncertainty set, Int. J. Electr. Power Energy Syst. 134, 107359. [CrossRef] [Google Scholar]
  • Asaad A., Ali A., Mahmoud K., Shaaban M.F., Lehtonen M., Kassem A.M., Ebeed M. (2023) Multi-objective optimal planning of EV charging stations and renewable energy resources for smart microgrids, Energy Sci. Eng. 11, 3, 1202–1218. [CrossRef] [Google Scholar]
  • Chamandoust H., Hashemi A., Bahramara S. (2021) Energy management of a smart autonomous electrical grid with a hydrogen storage system, Int. J. Hydrogen Energy 46, 17608–17626. [CrossRef] [Google Scholar]
  • Xu Y.P., Liu R.H., Tang L.Y., Wu H., She C. (2022) Risk-averse multi-objective optimization of multi-energy microgrids integrated with power-to-hydrogen technology, electric vehicles and data center under a hybrid robust-stochastic technique, Sustain. Cities Soc. 79, 103699. [CrossRef] [Google Scholar]
  • Chamandoust H. (2022) Optimal hybrid participation of customers in a smart micro-grid based on day-ahead electrical market, Artif. Intell. Rev. 55, 5891–5915. [CrossRef] [Google Scholar]
  • Chamandoust H., Derakhshan G., Hakimi S.M., Bahramara S. (2020) Tri-objective scheduling of residential smart electrical distribution grids with optimal joint of responsive loads with renewable energy sources, J. Energy Storage 27, 101112. [CrossRef] [Google Scholar]
  • Özbay F.A. (2023) A modified seahorse optimization algorithm based on chaotic maps for solving global optimization and engineering problems, Eng. Sci. Technol. 41, 101408. [Google Scholar]
  • Sharma P., Kumar M., Sharma H.K., Biju S.M. (2024) Generative adversarial networks (GANs): introduction, taxonomy, variants, limitations, and applications, Multimed. Tools Appl. 87, 1–48. [Google Scholar]
  • Chamandoust H., Bahramara S., Derakhshan G. (2020) Multi-objective operation of smart stand-alone microgrid with the optimal performance of customers to improve economic and technical indices, J. Energy Storage 31, 101738. [CrossRef] [Google Scholar]
  • Chamandoust H., Derakhshan G., Hakimi S.M., Bahramara S. (2019) Tri-objective optimal scheduling of smart energy hub system with schedulable loads, J. Clean. Prod. 236, 117584. [CrossRef] [Google Scholar]
  • Sun S., Wang C., Wang Y., Zhu X., Lu H. (2022) Multi-objective optimization dispatching of a micro-grid considering uncertainty in wind power forecasting, Energy Rep. 8, 2859–2874. [CrossRef] [Google Scholar]
  • Nazir M.S., Almasoudi F.M., Abdalla A.N., Zhu C., Alatawi K.S.S. (2023) Multi-objective optimal dispatching of combined cooling, heating and power using hybrid gravitational search algorithm and random forest regression: towards the microgrid orientation, Energy Rep. 9, 1926–1936. [CrossRef] [Google Scholar]
  • Qais M.H., Hasanien H.M., Turky R.A., Alghuwainem S., Tostado-Véliz M., Jurado F. (2022) Circle search algorithm: a geometry-based metaheuristic optimization algorithm, Mathematics 10, 10, 1626. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.