Issue
Sci. Tech. Energ. Transition
Volume 79, 2024
Decarbonizing Energy Systems: Smart Grid and Renewable Technologies
Article Number 63
Number of page(s) 12
DOI https://doi.org/10.2516/stet/2024065
Published online 13 September 2024
  • Narasipuram R.P., Mopidevi S. (2024) Assessment of E-mode GaN technology, practical power loss, and efficiency modelling of iL2C resonant DC-DC converter for xEV charging applications, J. Energy Storage 91, 112008. [CrossRef] [Google Scholar]
  • Narasipuram R.P., Mopidevi S. (2021) A technological overview & design considerations for developing electric vehicle charging stations, J. Energy Storage 43, 103225. [CrossRef] [Google Scholar]
  • Banothu C.S., Gorantla S.R., Attuluri R.V.B., Evuri G.R. (2024) Impacts of wireless charging system for electric vehicles on power grid, e-Prime Adv. Electr. Eng. Electr. Energy 8, 100561. [CrossRef] [Google Scholar]
  • Ghorbani M., Wang H., Roberts N. (2024) Analytical and numerical modeling of phase change material and hybrid PCM-heat sinks for high-power wireless EV charging, Int. Commun. Heat Mass Transf. 154, 107460. https://doi.org/10.1016/j.icheatmasstransfer.2024.107460. [CrossRef] [Google Scholar]
  • Souri J., OmidvarMohammadi H., Neyshabouri S.A.A.S., Chooplou C.A., Kahrizi E., Akbari H. (2024) Numerical simulation of aeration impact on the performance of a-type rectangular and trapezoidal piano key weirs, Model. Earth Syst. Environ. 10, 5205–5224. https://doi.org/10.1007/s40808-024-02058-4. [CrossRef] [Google Scholar]
  • Zarean Dowlat Abadi J., Iraj M., Bagheri E., Rabiei Pakdeh Z., Dehghani Tafti M.R. (2022) A multiobjective multiproduct mathematical modeling for green supply chain considering location-routing decisions, Math. Probl. Eng. 2022, 1, 7009338. https://doi.org/10.1155/2022/7009338. [CrossRef] [Google Scholar]
  • Panahi S., Cheraghifar F., Talebian Sh. (2018) An investigation on painting and imagery in zen, Mod. Appl. Sci 12, 9, 200–208. [CrossRef] [Google Scholar]
  • Ghorbani M., Wang H. (2023) Computational modeling and experiment validation of a microchannel cross-flow heat exchanger, Int. Commun. Heat Mass Transf. 149, 107116. https://doi.org/10.1016/j.icheatmasstransfer.2023.107116. [CrossRef] [Google Scholar]
  • Kahrizi E., Neyshabouri S.A.A.S., Zeynolabedin A., Souri J., Akbari H. (2023) Experimental evaluation of two-layer air bubble curtains to prevent seawater intrusion into rivers, J. Water Clim. Change 14, 2, 543–558. https://doi.org/10.2166/wcc.2023.384. [CrossRef] [Google Scholar]
  • Iraj M., Chobar A.P., Peivandizadeh A., Abolghasemian M. (2024) Presenting a two-echelon multi-objective supply chain model considering the expiration date of products and solving it by applying MODM, Sustain. Manuf. Serv. Econ. 3, 100022. https://doi.org/10.1016/j.smse.2024.100022. [Google Scholar]
  • Javidialsaadi A., Mondal S., Subramanian S. (2023) Model checks for two-sample location-scale, J. Nonparametr. Stat. 36, 3, 749–779. https://doi.org/10.1080/10485252.2023.2243350. [Google Scholar]
  • Chen D., Hosseini A., Smith A., Nikkhah A.F., Heydarian A., Shoghli O., Campbell B. (2024) Performance evaluation of real-time object detection for electric scooters. arXiv preprint arXiv.2405.03039. [Google Scholar]
  • Atashpanjeh H., Behfar A., Haverkamp C., Verdoes M.M., Al-Ameen M.N. (2022) Intermediate help with using digital devices and online accounts: understanding the needs, expectations, and vulnerabilities of young adults, in: A. Moallem (ed), HCI for Cybersecurity, Privacy and Trust. HCII 2022. Lecture Notes in Computer Science, vol. 13333, Springer, Cham, pp. 3–15. https://doi.org/10.1007/978-3-031-05563-8_1. [Google Scholar]
  • EskandariNasab M., Raeisi Z., Lashaki R.A., Najafi H. (2024) A GRU-CNN model for auditory attention detection using microstate and recurrence quantification analysis, Sci. Rep. 14, 8861. https://doi.org/10.1038/s41598-024-58886-y. [CrossRef] [Google Scholar]
  • Nguyen V.D., Mirza S., Zakeri A., Gupta A., Khaldi K., Aloui R., Mantini P., Shah S.K., Merchant F., Merchant F. (2024) Tackling domain shifts in person re-identification: a survey and analysis, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4149–4159. [Google Scholar]
  • Kiani S., Salmanpour A., Hamzeh M., Kebriaei H. (2024) Learning robust model predictive control for voltage control of islanded microgrid, IEEE Trans. Autom. Sci. Eng. https://doi.org/10.1109/TASE.2024.3388018. [Google Scholar]
  • Seifi N., Al-Mamun A. (2024) Optimizing memory access efficiency in CUDA kernel via data layout technique, J. Comput. Commun. 12, 124–139. https://doi.org/10.4236/jcc.2024.125009. [CrossRef] [Google Scholar]
  • Behfar A., Atashpanjeh H., Al-Ameen M.N. (2023) Can password meter be more effective towards user attention, engagement, and attachment? A study of metaphor-based designs, in: Companion Publication of the 2023 Conference on Computer Supported Cooperative Work and Social Computing, pp. 164–171. https://doi.org/10.1145/3584931.3606983. [Google Scholar]
  • Zakeri A., Hassanpour H. (2021) Whispernet: deep siamese network for emotion and speech tempo invariant visual-only lip-based biometric, in: 2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS), IEEE, pp. 1–5. https://doi.org/10.1109/ICSPIS54653.2021.9729394. [Google Scholar]
  • Hosseini A., Yahouni Z., Feizabadi M. (2023) Scheduling AIV transporter using simulation-based supervised learning: a case study on a dynamic job-shop with three workstations, IFAC – Pap. 56, 2, 8591–8597. https://doi.org/10.1016/j.ifacol.2023.10.032. [Google Scholar]
  • Hajrasouliha A., Ghahfarokhi B.S. (2021) Dynamic geo-based resource selection in LTE-V2V communications using vehicle trajectory prediction, Comput. Commun. 177, 239–254. [CrossRef] [Google Scholar]
  • Akbari P., Bafarasat A.Z. (2024) Exploring energy efficiency in historical urban fabrics for energy-conscious planning of new urban developments, J. Urban Plan. Dev. 150, 2, 04024011. [CrossRef] [Google Scholar]
  • Demir N., Shadjou A.M., Abdulameer M.K., Almasoudie N.K.A., Mohammed N., Fooladi H. (2024) A low-carbon multigeneration system based on a solar collector unit, a bio waste gasification process and a water harvesting unit, Int. J. Low-Carbon Technol. 19, 1204–1214. [CrossRef] [Google Scholar]
  • Ashary A., Rayguru M.M., SharafianArdakani P., Kondaurova I., Popa D.O. (2024) Multi-joint adaptive motion imitation in robot-assisted physiotherapy with dynamic time warping and recurrent neural networks, in: SoutheastCon 2024, Atlanta, GA, USA, 15-24 March, IEEE, pp. 1388 –1394. [Google Scholar]
  • Yousefizad M., Zarasvand M.M., Bagheritabar M., Ghezelayagh M.M., Farahi A., Ghafouri T., Raissi F., Zeidabadi M.A., Manavizadeh N. (2023) Performance investigation of low-power flexible n-ZnO/p-CuO/n-ZnO heterojunction bipolar transistor: simulation study, Micro Nanostructures 180, 207594. [CrossRef] [Google Scholar]
  • Ghasemi E., Ranjbaran A., Pourhossein J. (2023) Designing multi-objective electric and thermal energy management system of microgrid in the presence of controllable loads and electric vehicles, Electr. Eng. 106, 2, 1–14. [Google Scholar]
  • Gholami K., Abbasi M., Azizivahed A., Li L. (2023) An efficient bi-objective approach for dynamic economic emission dispatch of renewable-integrated microgrids, J. Ambient Intell. Humaniz. Comput. 14, 8, 10695–10714. [CrossRef] [Google Scholar]
  • Tong L., Zhao S., Jiang H., Zhou J., Xu B. (2021) Multi-scenario and multi-objective collaborative optimization of distribution network considering electric vehicles and mobile energy storage systems, IEEE Access 9, 55690–55697. [CrossRef] [Google Scholar]
  • Heydari A., Nezhad M.M., Keynia F., Fekih A., Shahsavari-Pour N., Garcia D.A., Piras G. (2023) A combined multi-objective intelligent optimization approach considering techno-economic and reliability factors for hybrid-renewable microgrid systems, J. Clean. Prod. 383, 135249. [CrossRef] [Google Scholar]
  • Hou H., Wang Q., Xiao Z., Xue M., Wu Y., Deng X., Xie C. (2022) Data-driven economic dispatch for islanded micro-grid considering uncertainty and demand response, Int. J. Electr. Power Energy Syst. 136, 107623. [CrossRef] [Google Scholar]
  • Cao Y., Mu Y., Jia H., Yu X., Hou K., Wang H. (2024) A multi-objective stochastic optimization approach for planning a multi-energy microgrid considering unscheduled islanded operation, IEEE Trans. Sustain. Energy 15, 1300–1314. [CrossRef] [Google Scholar]
  • Wang R., Xu T., Xu H., Gao G., Zhang Y., Zhu K. (2023) Robust multi-objective load dispatch in microgrid involving unstable renewable generation, Int. J. Electr. Power Energy Syst. 148, 108991. [CrossRef] [Google Scholar]
  • Mukhopadhyay B., Das D. (2022) Optimal multi-objective long-term sizing of distributed energy resources and hourly power scheduling in a grid-tied microgrid, Sustain. Energy Grids Netw. 30, 100632. [CrossRef] [Google Scholar]
  • Qiao B., Liu J., Huan J. (2022) Multi-objective economic emission dispatch of thermal power-electric vehicles considering user’s revenue, Soft Comput. 26, 22, 12833–12849. [CrossRef] [PubMed] [Google Scholar]
  • Chen H., Gao L., Zhang Z. (2021) Multi-objective optimal scheduling of a microgrid with uncertainties of renewable power generation considering user satisfaction, Int. J. Electr. Power Energy Syst. 131, 107142. [CrossRef] [Google Scholar]
  • Tian H., Wang K., Cui X., Chen Z., Zhao E., Saeedi S. (2023) Multi-objective planning of microgrid based on renewable energy sources and energy storage system, J. Energy Storage 68, 107803. [CrossRef] [Google Scholar]
  • Tan B., Chen H., Zheng X., Huang J. (2022) Two-stage robust optimization dispatch for multiple microgrids with electric vehicle loads based on a novel data-driven uncertainty set, Int. J. Electr. Power Energy Syst. 134, 107359. [CrossRef] [Google Scholar]
  • Asaad A., Ali A., Mahmoud K., Shaaban M.F., Lehtonen M., Kassem A.M., Ebeed M. (2023) Multi-objective optimal planning of EV charging stations and renewable energy resources for smart microgrids, Energy Sci. Eng. 11, 3, 1202–1218. [CrossRef] [Google Scholar]
  • Chamandoust H., Hashemi A., Bahramara S. (2021) Energy management of a smart autonomous electrical grid with a hydrogen storage system, Int. J. Hydrogen Energy 46, 17608–17626. https://doi.org/10.1016/j.ijhydene.2021.02.174. [CrossRef] [Google Scholar]
  • Xu Y.P., Liu R.H., Tang L.Y., Wu H., She C. (2022) Risk-averse multi-objective optimization of multi-energy microgrids integrated with power-to-hydrogen technology, electric vehicles and data center under a hybrid robust-stochastic technique, Sustain. Cities Soc. 79, 103699. [CrossRef] [Google Scholar]
  • Chamandoust H. (2022) Optimal hybrid participation of customers in a smart micro-grid based on day-ahead electrical market, Artif. Intell. Rev. 55, 5891–591. https://doi.org/10.1007/s10462-022-10154-z. [CrossRef] [Google Scholar]
  • Chamandoust H., Derakhshan G., Hakimi S.M., Bahramara S. (2019) Tri-objective scheduling of residential smart electrical distribution grids with optimal joint of responsive loads with renewable energy sources, J Energy Storage 27, 101112. https://doi.org/10.1016/j.est.2019.101112. [Google Scholar]
  • Özbay F.A. (2023) A modified seahorse optimization algorithm based on chaotic maps for solving global optimization and engineering problems, Eng. Sci. Technol. Int. J. 41, 101408. [Google Scholar]
  • Sharma P., Kumar M., Sharma H.K., Biju S.M. (2024) Generative adversarial networks (GANs): introduction, taxonomy, variants, limitations, and applications, Multimed. Tools Appl. 1–48. [Google Scholar]
  • Chamandoust H., Bahramara S., Derakhshan G. (2020) Multi-objective operation of smart stand-alone microgrid with the optimal performance of customers to improve economic and technical indices, J. Energy Storage 31, 101738. https://doi.org/10.1016/j.est.2020.101738. [CrossRef] [Google Scholar]
  • Chamandoust H., Derakhshan G., Hakimi S.M., Bahramara S. (2019) Tri-objective optimal scheduling of smart energy hub system with schedulable loads, J. Clean. Prod. 236, 117584. https://doi.org/10.1016/j.jclepro.2019.07.059. [CrossRef] [Google Scholar]
  • Sun S., Wang C., Wang Y., Zhu X., Lu H. (2022) Multi-objective optimization dispatching of a micro-grid considering uncertainty in wind power forecasting, Energy Rep. 8, 2859–2874. [CrossRef] [Google Scholar]
  • Nazir M.S., Almasoudi F.M., Abdalla A.N., Zhu C., Alatawi K.S.S. (2023) Multi-objective optimal dispatching of combined cooling, heating and power using hybrid gravitational search algorithm and random forest regression: towards the microgrid orientation, Energy Rep. 9, 1926–1936. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.