Issue
Sci. Tech. Energ. Transition
Volume 79, 2024
Decarbonizing Energy Systems: Smart Grid and Renewable Technologies
Article Number 55
Number of page(s) 10
DOI https://doi.org/10.2516/stet/2024054
Published online 20 August 2024
  • Monfaredi P., Emami S.M.M., Moghadam A.S. (2022) Seismic behavior of hollow-core infilled steel frames; an experimental and numerical study, J. Constr. Steel Res. 192, 107244. [CrossRef] [Google Scholar]
  • Monfaredi P., Nazarpour M., Moghadam A.S. (2021) Influence of hollow-core wall panels on the cyclic behavior of different types of steel framing systems, PCI J. 66, 5. https://doi.org/10.15554/pcij66.5-02. [Google Scholar]
  • Nazarpour M., Monfaredi P., Moghadam A.S. (2019) Experimental evaluation of hollow-core wall orientation in steel moment frame, PCI J. 64, 3, 92–103. https://doi.org/10.15554/pcij64.3-02. [CrossRef] [Google Scholar]
  • Oshaghi S. (2024) Nano-sized magnetic molecularly imprinted polymer solid-phase microextraction for highly selective recognition and enrichment of sulfamethoxazole from spiked water samples, J. Chromatogr. A 1729, 465016. [CrossRef] [Google Scholar]
  • Rouhi K., Motlagh M.S., Dalir F., Perez J., Golzary A. (2024) Towards sustainable electricity generation: evaluating carbon footprint in waste-to-energy plants for environmental mitigation in Iran, Energy Rep. 11, 2623–2632. [CrossRef] [Google Scholar]
  • Vakili B., Akbari O., Ebrahimi B. (2024) Efficient approximate multipliers utilizing compact and low-power compressors for error-resilient applications, AEU-Int. J. Electron. Commun. 174, 155039 [CrossRef] [Google Scholar]
  • Keivanimehr M., Chamorro H.R., Zareian-Jahromi M., Segundo-Sevilla F.R., Guerrero J.M., Konstantinou C. (2021) Load shedding frequency management of microgrids using hierarchical fuzzy control, in: 2021 World Automation Congress (WAC), August, IEEE, pp. 216–221. [Google Scholar]
  • Jahromi M.H.M., Tafti H.D., Hosseini S.M., Jalali A., Keivanimehr M. (2020) Maximum power point tracking of a network-connected photovoltaic system based on gravity search algorithm and fuzzy logic controller, J. Solar Energy Res. Updates 7, 52–63. [CrossRef] [Google Scholar]
  • Rostam-Alilou A.A., Zhang C., Salboukh F., Gunes O. (2022) Potential use of Bayesian Networks for estimating relationship among rotational dynamics of floating offshore wind turbine tower in extreme environmental conditions, Ocean Eng. 244, 110230. [CrossRef] [Google Scholar]
  • Mozafarjazi M., Rabiee R. (2024) Experimental and numerical study on the load-bearing capacity, ductility and energy absorption of RC shear walls with opening containing zeolite and silica fume, Eng. Solid Mech. 12, 3, 237–246. [CrossRef] [Google Scholar]
  • Ashary A., Rayguru M.M., SharafianArdakani P., Kondaurova I., Popa D.O. (2024) Multi-joint adaptive motion imitation in robot-assisted physiotherapy with dynamic time warping and recurrent neural networks, in: 2021 World Automation Congress (WAC), March, IEEE, pp. 216–221. [Google Scholar]
  • Platt L.S., Mahmoudi A. (2024) Evaluating climate and community health care infection risks through computational predesign, Technol. Archit. Des. 8, 1, 70–82. [Google Scholar]
  • Bargahi M., Yazici A. (2023) Selecting the representative travel time reliability measure based on metric (dis) agreement patterns, Int. J. Intell. Transp. Syst. Res. 21, 1, 36–47. [Google Scholar]
  • Bargahi M., Yazici A., Finn D., Tran C. (2024) Assessment of accessibility and equality of access in Long Island libraries from the perspective of community resilience, Case Stud. Transp. Policy 15, 101163. [CrossRef] [Google Scholar]
  • Bargahi M., Barati H., Yazici A. (2023) Relationship between criticality and travel time reliability in transportation networks, in: 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), IEEE, pp. 2479–2484. [Google Scholar]
  • Rouhi K., Shafiepour Motlagh M., Dalir F. (2023) Developing a carbon footprint model and environmental impact analysis of municipal solid waste transportation: a case study of Tehran, Iran, J. Air Waste Manage. Assoc. 73, 12, 890–901. [CrossRef] [PubMed] [Google Scholar]
  • Serajian S., Shamsabadi A.A., Gnani Peer Mohamed S.I., Nejati S., Bavarian M. (2024) MXenes in solid-state batteries: current status and outlook, J. Power Sources 610, 234721. https://doi.org/10.1016/j.jpowsour.2024.234721. [CrossRef] [Google Scholar]
  • Mohaghegh S., Kondo S., Yemiscioglu G., Muhtaroglu A. (2022) A novel multiplier hardware organization for finite fields defined by all-one polynomials, IEEE Trans. Circuits Syst. II: Express Briefs 69, 12, 5084–5088. https://doi.org/10.1109/TCSII.2022.3188567. [Google Scholar]
  • Kiani S., Salmanpour A., Hamzeh M., Kebriaei H. (2024) Learning robust model predictive control for voltage control of islanded microgrid, IEEE Transactions on Automation Science and Engineering, pp. 1–12. https://doi.org/10.1109/TASE.2024.3388018. [CrossRef] [Google Scholar]
  • Seifi N., Al-Mamun A. (2024) Optimizing memory access efficiency in CUDA kernel via data layout technique, J. Comput. Commun. 12, 124–139. https://doi.org/10.4236/jcc.2024.125009. [CrossRef] [Google Scholar]
  • Salehi F., Pariafsai F., Dixit M.K. (2023) The impact of misaligned idiotropic and visual axes on spatial ability under altered visuospatial conditions, Virtual Reality 27, 3633–3647. https://doi.org/10.1007/s10055-023-00859-z. [CrossRef] [Google Scholar]
  • Lu Z., Wang J., Shahidehpour M., Bai L., Xiao Y., Li H. (2024) Cooperative operation of distributed energy resources and thermal power plant with a carbon-capture-utilization-and-storage system, IEEE Trans. Power Syst. 39, 1, 1850–1866. https://doi.org/10.1109/TPWRS.2023.3253809. [CrossRef] [Google Scholar]
  • Luo J., Zhuo W., Liu S., Xu B. (2024) The optimization of carbon emission prediction in low carbon energy economy under big data, IEEE Access 12, 14690–14702. https://doi.org/10.1109/ACCESS.2024.3351468. [CrossRef] [Google Scholar]
  • Feng Y., Chen J., Luo J. (2024) Life cycle cost analysis of power generation from underground coal gasification with carbon capture and storage (CCS) to measure the economic feasibility, Resour. Policy 92, 104996. https://doi.org/10.1016/j.resourpol.2024.104996. [CrossRef] [Google Scholar]
  • Song J., Mingotti A., Zhang J., Peretto L., Wen H. (2022) Fast iterative-interpolated DFT phasor estimator considering out-of-band interference, IEEE Trans. Instrum. Meas. 71, 1–14. https://doi.org/10.1109/TIM.2022.3203459. [CrossRef] [Google Scholar]
  • Li P., Hu J., Qiu L., Zhao Y., Ghosh B.K. (2022) A distributed economic dispatch strategy for power–water networks, IEEE Trans. Control Network Syst. 9, 1, 356–366. https://doi.org/10.1109/TCNS.2021.3104103. [CrossRef] [MathSciNet] [Google Scholar]
  • Duan Y., Zhao Y., Hu J. (2023) An initialization-free distributed algorithm for dynamic economic dispatch problems in microgrid: modeling, optimization and analysis, Sustain. Energy Grids Netw. 34, 101004. https://doi.org/10.1016/j.segan.2023.101004. [CrossRef] [Google Scholar]
  • Shirkhani M., Tavoosi J., Danyali S., Sarvenoee A.K., Abdali A., Mohammadzadeh A., Zhang C. (2023) A review on microgrid decentralized energy/voltage control structures and methods, Energy Rep. 10, 368–380. https://doi.org/10.1016/j.egyr.2023.06.022. [CrossRef] [Google Scholar]
  • Wang C., Wang Y., Wang K., Dong Y., Yang Y., Hanne T. (2017) An improved hybrid algorithm based on biogeography/complex and metropolis for many-objective optimization, Math. Probl. Eng. 2017, 2462891. https://doi.org/10.1155/2017/2462891. [CrossRef] [Google Scholar]
  • Lei Y., Yanrong C., Hai T., Ren G., Wenhuan W. (2023) DGNet: an adaptive lightweight defect detection model for new energy vehicle battery current collector, IEEE Sens. J. 23, 23, 29815–29830. https://doi.org/10.1109/JSEN.2023.3324441. [CrossRef] [Google Scholar]
  • Hu J., Zou Y., Soltanov N. (2024) A multilevel optimization approach for daily scheduling of combined heat and power units with integrated electrical and thermal storage, Expert Syst. App. 250, 123729. https://doi.org/10.1016/j.eswa.2024.123729. [CrossRef] [Google Scholar]
  • Zhou Y., Zhai Q., Xu Z., Wu L., Guan X. (2024) Multi-stage adaptive stochastic-robust scheduling method with affine decision policies for hydrogen-based multi-energy microgrid, IEEE Trans. Smart Grid 15, 3, 2738–2750. https://doi.org/10.1109/TSG.2023.3340727. [CrossRef] [Google Scholar]
  • Tian J., Wang B., Guo R., Wang Z., Cao K., Wang X. (2022) Adversarial attacks and defenses for deep-learning-based unmanned aerial vehicles, IEEE Internet Things J. 9, 22, 22399–22409. https://doi.org/10.1109/JIOT.2021.3111024. [CrossRef] [MathSciNet] [Google Scholar]
  • Ju Y., Liu W., Zhang Z., Zhang R. (2022) Distributed three-phase power flow for AC/DC hybrid networked microgrids considering converter limiting constraints, IEEE Trans. Smart Grid 13, 3, 1691–1708. https://doi.org/10.1109/TSG.2022.3140212. [CrossRef] [Google Scholar]
  • Wang R., Gu Q., Lu S., Tian J., Yin Z., Yin L., Zheng W. (2024) FI-NPI: exploring optimal control in parallel platform systems, Electronics 13, 7, 1168. https://doi.org/10.3390/electronics13071168. [CrossRef] [Google Scholar]
  • Li T., Zhang M., Cao H., Li Y., Tarkoma S., Hui P. (2020) “What Apps Did You Use?”: understanding the long-term evolution of mobile app usage, in: WWW ‘20: The Web Conference 2020, Taipei, Taiwan, April 20–24, Association for Computing Machinery, pp. 66–76. https://doi.org/10.1145/3366423.3380095. [Google Scholar]
  • Borjali Navesi R., Nazarpour D., Ghanizadeh R., Alemi P. (2021) Switchable capacitor bank coordination and dynamic network reconfiguration for improving operation of distribution network integrated with renewable energy resources, J. Mod. Power Syst. Clean Energy 10, 637–646. https://doi.org/10.35833/MPCE.2020.000067. [Google Scholar]
  • Yan Z., Gao Z., Borjali Navesi R., Jadidoleslam M., Pirouzi A. (2023) Smart distribution network operation based on energy management system considering economic-technical goals of network operator, J. Energy Rep. 9, 4466–4477. https://doi.org/10.1016/j.egyr.2023.03.095. [CrossRef] [Google Scholar]
  • Bayat A., Bagheri A., Navesi R.B. (2023) A real-time PMU-based optimal operation strategy for active and reactive power sources in smart distribution systems, Electr. Power Syst. Res. 225, 109842. https://doi.org/10.1016/j.epsr.2023.109842. [CrossRef] [Google Scholar]
  • Gatabi M., Fasihi K., Naghibi A.F., Garoosi H. (2021) Optimal design of silicon solar cells using double grating structure, Majlesi J. Mechatron. Syst. 10, 2, 39–45. [Google Scholar]
  • Naghibi A.F., Koochaki A., Gatabi M. (2019) Optimal protection coordination of directional overcurrent relays using shuffled frog leaping in smart grids, Majlesi J. Mechatron. Syst. 8, 4, 25–31. [Google Scholar]
  • Chamandoust H. (2022) Optimal hybrid participation of customers in a smart micro-grid based on day-ahead electrical market, Artif. Intell. Rev. 55, 7, 5891–5915. [CrossRef] [Google Scholar]
  • Chamandoust H., Bahramara S., Derakhshan G. (2020) Multi-objective operation of smart stand-alone microgrid with the optimal performance of customers to improve economic and technical indices, J. Energy Storage 31, 101738. [CrossRef] [Google Scholar]
  • Shafiei K., Zadeh S.G., Hagh M.T. (2024) Planning for a network system with renewable resources and battery energy storage, focused on enhancing resilience, J. Energy Storage 87, 111339. [CrossRef] [Google Scholar]
  • Oraibi W.A., Mohammadi-Ivatloo B., Hosseini S.H., Abapour M. (2023) A resilience-oriented optimal planning of energy storage systems in high renewable energy penetrated systems, J. Energy Storage 67, 107500 [CrossRef] [Google Scholar]
  • Ghanbari-Ghalehjoughi M., Taghizad-Tavana K., Nojavan S. (2023) Resilient operation of the renewable energy and battery energy storages based smart distribution grid considering physical-cyber-attacks, J. Energy Storage 62, 106950 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.